File size: 1,738 Bytes
284eba0
 
 
3e7dbba
284eba0
0de8536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284eba0
0de8536
 
 
 
 
 
284eba0
0de8536
284eba0
0de8536
 
15f8afb
0de8536
 
 
 
4e2ea8a
0de8536
4e2ea8a
 
 
284eba0
0de8536
 
4e2ea8a
0600bf3
cbb0a6b
0de8536
 
cbb0a6b
0de8536
cbb0a6b
3e7dbba
284eba0
4191bbd
 
 
 
94ad081
f07f446
4191bbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import tensorflow as tf
import gdown
from PIL import Image

input_shape = (32, 32, 3)
resized_shape = (224, 224, 3)
num_classes = 10
labels = {
    0: "plane",
    1: "car",
    2: "bird",
    3: "cat",
    4: "deer",
    5: "dog",
    6: "frog",
    7: "horse",
    8: "ship",
    9: "truck",
}

# Download the model file
def download_model():
    url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL"
    output = "modelV2Lmixed.keras"
    gdown.download(url, output, quiet=False)
    return output

model_file = download_model()

# Load the model
model = tf.keras.models.load_model(model_file)

# Perform image classification
def predict_class(image):
    img = tf.cast(image, tf.float32)
    img = tf.image.resize(img, [input_shape[0], input_shape[1]])
    img = tf.expand_dims(img, axis=0)
    prediction = model.predict(img)
    class_index = tf.argmax(prediction[0]).numpy()
    predicted_class = labels[class_index]
    return predicted_class

# UI Design
def classify_image(image):
    predicted_class = predict_class(image)
    output = f"<h2>Predicted Class: <span style='text-transform:uppercase';>{predicted_class}</span></h2>"
    return output

inputs = gr.inputs.Image(label="Upload an image")
outputs = gr.outputs.HTML()

title = "<h1 style='text-align: center;'>Image Classifier</h1>"
description = "Upload an image and get the predicted class."

gr.Interface(fn=classify_image, 
             inputs=inputs, 
             outputs=outputs, 
             title=title, 
             examples=["00_plane.jpg", "01_car.jpg", "02_bird.jpg", "03_cat.jpg", "04_deer.jpg"], 
             css="body {background-image: url('file=./wave.mp4')}",
             description=description).launch()