Spaces:
Sleeping
Sleeping
File size: 2,453 Bytes
284eba0 3e7dbba 284eba0 0de8536 284eba0 0de8536 284eba0 0de8536 284eba0 0de8536 15f8afb 0de8536 92e65a5 0de8536 4e2ea8a 0de8536 7f5ab8a 284eba0 0de8536 e980426 0de8536 e980426 7f17609 9822b4d 7f17609 cbb0a6b 0de8536 e980426 49ddf98 e980426 49ddf98 0de8536 cbb0a6b 3e7dbba f160696 284eba0 4191bbd 49ddf98 f160696 49ddf98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import tensorflow as tf
import gdown
from PIL import Image
input_shape = (32, 32, 3)
resized_shape = (224, 224, 3)
num_classes = 10
labels = {
0: "plane",
1: "car",
2: "bird",
3: "cat",
4: "deer",
5: "dog",
6: "frog",
7: "horse",
8: "ship",
9: "truck",
}
# Download the model file
def download_model():
url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL"
output = "modelV2Lmixed.keras"
gdown.download(url, output, quiet=False)
return output
model_file = download_model()
# Load the model
model = tf.keras.models.load_model(model_file)
# Perform image classification
# def predict_class(image):
# img = tf.cast(image, tf.float32)
# img = tf.image.resize(img, [input_shape[0], input_shape[1]])
# img = tf.expand_dims(img, axis=0)
# prediction = model.predict(img)
# class_index = tf.argmax(prediction[0]).numpy()
# predicted_class = labels[class_index]
# return predicted_class
def predict_class(image):
img = tf.cast(image, tf.float32)
img = tf.image.resize(img, [input_shape[0], input_shape[1]])
img = tf.expand_dims(img, axis=0)
prediction = model.predict(img)
return prediction[0]
# UI Design
# def classify_image(image):
# predicted_class = predict_class(image)
# output = f"<h2>Predicted Class: <span style='text-transform:uppercase';>{predicted_class}</span></h2>"
# return output
def classify_image(image):
results = predict_class(image)
# output = {}
# for index in range(len(results)):
# predicted_label = labels.get(index)
# score = results[index]
# output[predicted_label] = str(score)
output = {labels.get(i): float(results[i]) for i in range(len(results))}
return output
inputs = gr.inputs.Image(type="pil", label="Upload an image")
# outputs = gr.outputs.HTML()
outputs = gr.outputs.Label(num_top_classes=5)
title = "<h1 style='text-align: center;'>Image Classifier</h1>"
description = "Upload an image and get the predicted class."
# css_code='body{background-image:url("file=wave.mp4");}'
gr.Interface(fn=classify_image,
inputs=inputs,
outputs=outputs,
title=title,
examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_bird.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
# css=css_code,
description=description,
enable_queue=True).launch()
|