File size: 2,306 Bytes
284eba0
 
 
3e7dbba
284eba0
0de8536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284eba0
0de8536
 
 
 
 
 
284eba0
0de8536
284eba0
0de8536
 
15f8afb
0de8536
92e65a5
 
 
 
 
 
 
 
 
0de8536
 
 
4e2ea8a
0de8536
92e65a5
284eba0
0de8536
e980426
 
 
 
 
0de8536
e980426
 
 
 
 
 
cbb0a6b
0de8536
e980426
 
0de8536
e980426
 
0de8536
cbb0a6b
3e7dbba
f160696
284eba0
4191bbd
 
 
 
62bf166
f160696
62bf166
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import tensorflow as tf
import gdown
from PIL import Image

input_shape = (32, 32, 3)
resized_shape = (224, 224, 3)
num_classes = 10
labels = {
    0: "plane",
    1: "car",
    2: "bird",
    3: "cat",
    4: "deer",
    5: "dog",
    6: "frog",
    7: "horse",
    8: "ship",
    9: "truck",
}

# Download the model file
def download_model():
    url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL"
    output = "modelV2Lmixed.keras"
    gdown.download(url, output, quiet=False)
    return output

model_file = download_model()

# Load the model
model = tf.keras.models.load_model(model_file)

# Perform image classification
# def predict_class(image):
#     img = tf.cast(image, tf.float32)
#     img = tf.image.resize(img, [input_shape[0], input_shape[1]])
#     img = tf.expand_dims(img, axis=0)
#     prediction = model.predict(img)
#     class_index = tf.argmax(prediction[0]).numpy()
#     predicted_class = labels[class_index]
#     return predicted_class

def predict_class(image):
    img = tf.cast(image, tf.float32)
    img = tf.image.resize(img, [input_shape[0], input_shape[1]])
    img = tf.expand_dims(img, axis=0)
    prediction = model.predict(img)
    return prediction

# UI Design
# def classify_image(image):
#     predicted_class = predict_class(image)
#     output = f"<h2>Predicted Class: <span style='text-transform:uppercase';>{predicted_class}</span></h2>"
#     return output

def classify_image(image):
    results = predict_class(image)
    output = {}
    for prediction in results:
        predicted_label = prediction['label']
        score = prediction['score']
        output[predicted_label] = score
    return output



inputs = gr.inputs.Image(label="Upload an image")
# outputs = gr.outputs.HTML()
outputs = gr.outputs.Label(num_top_classes=10)

title = "<h1 style='text-align: center;'>Image Classifier</h1>"
description = "Upload an image and get the predicted class."
# css_code='body{background-image:url("file=wave.mp4");}'

gr.Interface(fn=classify_image, 
             inputs=inputs, 
             outputs=outputs, 
             title=title, 
             examples=["00_plane.jpg", "01_car.jpg", "02_bird.jpg", "03_cat.jpg", "04_deer.jpg"],
             # css=css_code,
             description=description).launch()