Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import gdown | |
from PIL import Image | |
input_shape = (32, 32, 3) | |
resized_shape = (224, 224, 3) | |
num_classes = 10 | |
labels = { | |
0: "plane", | |
1: "car", | |
2: "bird", | |
3: "cat", | |
4: "deer", | |
5: "dog", | |
6: "frog", | |
7: "horse", | |
8: "ship", | |
9: "truck", | |
} | |
# a file | |
url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL" | |
output = "modelV2Lmixed.keras" | |
gdown.download(url, output, quiet=False) | |
def load_model(): | |
model = tf.keras.models.load_model("./modelV2Lmixed.keras") | |
return model | |
def classify_image(image, model): | |
image = tf.cast(image, tf.float32) | |
image = tf.image.resize(image, [32, 32]) | |
image = np.expand_dims(image, axis=0) | |
prediction = model.predict(image) | |
confidences = {labels[i]: float(prediction[i]) for i in range(10)} | |
return confidences | |
model = load_model() | |
gr.Interface(fn=classify_image, | |
inputs=gr.Image(shape=(32, 32)), | |
outputs=gr.Label(num_top_classes=3), | |
examples=["03_cat.jpg", "05_dog.jpg"]).launch() | |