File size: 2,987 Bytes
14bf43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b170e19
14bf43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e65e9d4
14bf43e
 
 
 
 
 
 
 
e65e9d4
14bf43e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import io
import numpy as np


COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933],
]


def process_class_list(classes_string: str):
    if classes_string == "":
        return []
    classes_list = classes_string.split(",")
    classes_list = [x.strip() for x in classes_list]
    return classes_list


def model_inference(img, model_name = "yolos-small-dwr", prob_threshold: int, classes_to_show=str):
    feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
    model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")

    img = Image.fromarray(img)

    pixel_values = feature_extractor(img, return_tensors="pt").pixel_values

    with torch.no_grad():
        outputs = model(pixel_values, output_attentions=True)

    probas = outputs.logits.softmax(-1)[0, :, :-1]
    keep = probas.max(-1).values > prob_threshold

    target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
    postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
    bboxes_scaled = postprocessed_outputs[0]["boxes"]

    classes_list = process_class_list(classes_to_show)
    res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)

    return res_img


def plot_results(pil_img, prob, boxes, model, classes_list):
    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        cl = p.argmax()
        object_class = model.config.id2label[cl.item()]

        if len(classes_list) > 0:
            if object_class not in classes_list:
                continue

        ax.add_patch(
            plt.Rectangle(
                (xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3
            )
        )
        text = f"{object_class}: {p[cl]:0.2f}"
        ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())


def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


description = """Object Detection"""

image_in = gr.components.Image()
image_out = gr.components.Image()
prob_threshold_slider = gr.components.Slider(
    minimum=0, maximum=1.0, step=0.01, value=0.7, label="Probability Threshold"
)
classes_to_show = gr.components.Textbox(
    placeholder="e.g. car, dog",
    label="Classes to filter (leave empty to detect all classes)",
)

Iface = gr.Interface(
    fn=model_inference,
    inputs=[image_in, prob_threshold_slider, classes_to_show],
    outputs=image_out,
    title="Object Detection",
    description=description,
).launch()