yuragoithf's picture
Updated app
14bf43e
raw
history blame
3.02 kB
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import io
import numpy as np
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933],
]
def process_class_list(classes_string: str):
if classes_string == "":
return []
classes_list = classes_string.split(",")
classes_list = [x.strip() for x in classes_list]
return classes_list
def model_inference(img, model_name: str, prob_threshold: int, classes_to_show=str):
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
img = Image.fromarray(img)
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = model(pixel_values, output_attentions=True)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > prob_threshold
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]["boxes"]
classes_list = process_class_list(classes_to_show)
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
return res_img
def plot_results(pil_img, prob, boxes, model, classes_list):
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
object_class = model.config.id2label[cl.item()]
if len(classes_list) > 0:
if object_class not in classes_list:
continue
ax.add_patch(
plt.Rectangle(
(xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3
)
)
text = f"{object_class}: {p[cl]:0.2f}"
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
description = """Object Detection"""
image_in = gr.components.Image()
image_out = gr.components.Image()
model_choice = "yolos-small-dwr"
prob_threshold_slider = gr.components.Slider(
minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold"
)
classes_to_show = gr.components.Textbox(
placeholder="e.g. car, dog",
label="Classes to filter (leave empty to detect all classes)",
)
Iface = gr.Interface(
fn=model_inference,
inputs=[image_in, model_choice, prob_threshold_slider, classes_to_show],
outputs=image_out,
title="Object Detection",
description=description,
).launch()