yuragoithf commited on
Commit
af9e027
·
1 Parent(s): 37995d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -1,10 +1,11 @@
1
- from transformers import AutoFeatureExtractor, YolosForObjectDetection
2
- import gradio as gr
3
- from PIL import Image
4
- import torch
5
- import matplotlib.pyplot as plt
6
  import io
 
7
  import numpy as np
 
 
 
 
 
8
 
9
 
10
  COLORS = [
@@ -88,6 +89,7 @@ image_out = gr.components.Image()
88
  prob_threshold_slider = gr.components.Slider(
89
  minimum=0, maximum=1.0, step=0.01, value=0.7, label="Probability Threshold"
90
  )
 
91
  classes_to_show = gr.components.Textbox(
92
  placeholder="e.g. car, dog",
93
  label="Classes to filter (leave empty to detect all classes)",
@@ -97,5 +99,5 @@ gr.Interface(fn=model_inference,
97
  inputs=[image_in, prob_threshold_slider, classes_to_show],
98
  outputs=image_out,
99
  title=title,
100
- examples=["CTH.png", "carplane.webp"],
101
  description=description).launch()
 
 
 
 
 
 
1
  import io
2
+ import torch
3
  import numpy as np
4
+ import gradio as gr
5
+ import matplotlib.pyplot as plt
6
+
7
+ from transformers import AutoFeatureExtractor, YolosForObjectDetection
8
+ from PIL import Image
9
 
10
 
11
  COLORS = [
 
89
  prob_threshold_slider = gr.components.Slider(
90
  minimum=0, maximum=1.0, step=0.01, value=0.7, label="Probability Threshold"
91
  )
92
+
93
  classes_to_show = gr.components.Textbox(
94
  placeholder="e.g. car, dog",
95
  label="Classes to filter (leave empty to detect all classes)",
 
99
  inputs=[image_in, prob_threshold_slider, classes_to_show],
100
  outputs=image_out,
101
  title=title,
102
+ examples=["00_plane.jpg", "01_car.jpg"],
103
  description=description).launch()