File size: 1,167 Bytes
c899fa2
5e904fc
fd3835f
882c6dd
7d1537c
 
 
 
fd3835f
 
7d1537c
e9b5cc1
 
 
 
 
79948e0
fd5fbc8
7fdbcb9
 
 
 
 
 
 
5e904fc
7fdbcb9
cb7cbf4
 
e9b5cc1
 
 
fd3835f
882c6dd
 
e1fecdf
fd5fbc8
e9b5cc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import requests
import os, io
import gradio as gr
# from PIL import Image

API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"
headers = {"Authorization": "Bearer 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"}

def image_classifier(inp):
    return {'cat': 0.3, 'dog': 0.7}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

def rb(img):
    # initialiaze io to_bytes converter
    img_byte_arr = io.BytesIO()
    # define quality of saved array
    img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
    # converts image array to bytesarray
    img_byte_arr = img_byte_arr.getvalue()
    
    # response = requests.post(API_URL, headers=headers, data=bytes(img.tobytes("raw")))
    response = requests.post(API_URL, headers=headers, data=img_byte_arr)
    return response.json()

# train = os.listdir("./")
# print(train)
output = query("./09_truck.jpg")



inputs = gr.inputs.Image(type="pil", label="Upload an image")
demo = gr.Interface(fn=rb, inputs=inputs, outputs="json")
demo.launch()