File size: 1,196 Bytes
29007e0
8888815
29007e0
 
 
 
 
 
7527d42
29007e0
 
e28c3ee
 
 
29007e0
e28c3ee
c0c87ea
 
 
 
 
29007e0
7527d42
18972e6
29007e0
 
 
 
 
 
18972e6
29007e0
18972e6
29007e0
 
2c0abec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import requests
from PIL import Image

import requests

API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"
headers = {"Authorization": "Bearer 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"}
inputs = gr.inputs.Image(type="pil", label="Upload an image")

# Perform image segmentation for multy class output
# def query(inputs):
#     response = requests.post(API_URL, headers=headers, data=inputs)
#     return response.json()

inputs = "./04_deer.jpg"
def query(inputs):
    with open(inputs, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()


outputs = gr.outputs.HTML()
# outputs = gr.outputs.HTML() #uncomment for single class output 
#outputs = query(inputs)

title = "<h1 style='text-align: center;'>Image Segmentation</h1>"
description = "Upload an image and get the segmentation result."

gr.Interface(fn=query, 
             inputs=inputs, 
             outputs=outputs, 
             title=title, 
             examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_bird.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
             description=description).launch()