yuragoithf's picture
Update app.py
c0ca22c
raw
history blame
3.57 kB
import os
import cv2
import gdown
import gradio as gr
import tensorflow as tf
import urllib.request
import numpy as np
import keras.backend as K
from PIL import Image
from matplotlib import cm
#from tensorflow import keras
resized_shape = (768, 768, 3)
IMG_SCALING = (1, 1)
# def get_opencv_img_from_buffer(buffer, flags=cv2.IMREAD_COLOR):
# bytes_as_np_array = np.frombuffer(buffer.read(), dtype=np.uint8)
# return cv2.imdecode(bytes_as_np_array, flags)
# Download the model file
def download_model():
url = "https://drive.google.com/uc?id=1FhICkeGn6GcNXWTDn1s83ctC-6Mo1UXk"
output = "seg_unet_model.h5"
gdown.download(url, output, quiet=False)
return output
model_file = download_model()
#Custom objects for model
def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
targets = tf.dtypes.cast(K.flatten(y_true), tf.float32)
inputs = tf.dtypes.cast(K.flatten(y_pred), tf.float32)
intersection = K.sum(targets * inputs)
dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
inputs = K.clip(inputs, eps, 1.0 - eps)
out = - (ALPHA * ((targets * K.log(inputs)) + ((1 - ALPHA) * (1.0 - targets) * K.log(1.0 - inputs))))
weighted_ce = K.mean(out, axis=-1)
combo = (CE_RATIO * weighted_ce) - ((1 - CE_RATIO) * dice)
return combo
def dice_coef(y_true, y_pred, smooth=1):
y_pred = tf.dtypes.cast(y_pred, tf.int32)
y_true = tf.dtypes.cast(y_true, tf.int32)
intersection = K.sum(y_true * y_pred, axis=[1,2,3])
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
# Load the model
seg_model = tf.keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
inputs = gr.inputs.Image(type="pil", label="Upload an image", source="upload")
image_output = gr.outputs.Image(type="numpy", label="Output Image")
# outputs = gr.outputs.HTML() #uncomment for single class output
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def gen_pred(img=inputs, model=seg_model):
# rgb_path = os.path.join(test_image_dir,img)
# img = cv2.imread(rgb_path)
img = cv2.imread("./003e2c95d.jpg")
# pil_image = Image.open('./003b50a15.jpg')
# img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img/255
img = tf.expand_dims(img, axis=0)
pred = model.predict(img)
pred = np.squeeze(pred, axis=0)
print(pred)
pred = Image.fromarray(np.uint8(cm.gist_earth(pred)*255))
# color_coverted = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
# pil_image = Image.fromarray(pred)
# PIL_image = Image.fromarray(pred.astype('uint8'), 'RGB')
# return "UI in developing process ..."
return pred
title = "<h1 style='text-align: center;'>Semantic Segmentation</h1>"
description = "Upload an image and get prediction mask"
# css_code='body{background-image:url("file=wave.mp4");}'
gr.Interface(fn=gen_pred,
inputs=inputs,
outputs="image",
title=title,
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
# css=css_code,
description=description,
enable_queue=True).launch()