Commit
·
88d04c7
1
Parent(s):
1899d85
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from transformers import pipeline
|
|
9 |
|
10 |
from PIL import Image
|
11 |
from matplotlib import cm
|
|
|
12 |
|
13 |
|
14 |
resized_shape = (768, 768, 3)
|
@@ -45,7 +46,7 @@ def dice_coef(y_true, y_pred, smooth=1):
|
|
45 |
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
|
46 |
|
47 |
# Load the model
|
48 |
-
seg_model =
|
49 |
|
50 |
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
51 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
@@ -57,9 +58,6 @@ def gen_pred(img, model=seg_model):
|
|
57 |
# open_cv_image = np.array(pil_image)
|
58 |
# img = open_cv_image[:, :, ::-1].copy()
|
59 |
# # img = cv2.imread("./003e2c95d.jpg")
|
60 |
-
img_byte_arr = io.BytesIO()
|
61 |
-
img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
|
62 |
-
img = img_byte_arr.getvalue()
|
63 |
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
|
64 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
65 |
img = img/255
|
|
|
9 |
|
10 |
from PIL import Image
|
11 |
from matplotlib import cm
|
12 |
+
from tensorflow import keras
|
13 |
|
14 |
|
15 |
resized_shape = (768, 768, 3)
|
|
|
46 |
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
|
47 |
|
48 |
# Load the model
|
49 |
+
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
50 |
|
51 |
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
52 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
|
|
58 |
# open_cv_image = np.array(pil_image)
|
59 |
# img = open_cv_image[:, :, ::-1].copy()
|
60 |
# # img = cv2.imread("./003e2c95d.jpg")
|
|
|
|
|
|
|
61 |
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
|
62 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
63 |
img = img/255
|