Commit
·
b9b64f9
1
Parent(s):
0f34bc9
Update app.py
Browse files
app.py
CHANGED
@@ -10,14 +10,10 @@ import keras.backend as K
|
|
10 |
from PIL import Image
|
11 |
from matplotlib import cm
|
12 |
|
13 |
-
#from tensorflow import keras
|
14 |
|
15 |
resized_shape = (768, 768, 3)
|
16 |
IMG_SCALING = (1, 1)
|
17 |
|
18 |
-
# def get_opencv_img_from_buffer(buffer, flags=cv2.IMREAD_COLOR):
|
19 |
-
# bytes_as_np_array = np.frombuffer(buffer.read(), dtype=np.uint8)
|
20 |
-
# return cv2.imdecode(bytes_as_np_array, flags)
|
21 |
|
22 |
# Download the model file
|
23 |
def download_model():
|
@@ -33,7 +29,6 @@ model_file = download_model()
|
|
33 |
def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
|
34 |
targets = tf.dtypes.cast(K.flatten(y_true), tf.float32)
|
35 |
inputs = tf.dtypes.cast(K.flatten(y_pred), tf.float32)
|
36 |
-
|
37 |
intersection = K.sum(targets * inputs)
|
38 |
dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
|
39 |
inputs = K.clip(inputs, eps, 1.0 - eps)
|
@@ -52,7 +47,7 @@ def dice_coef(y_true, y_pred, smooth=1):
|
|
52 |
# Load the model
|
53 |
seg_model = tf.keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
54 |
|
55 |
-
inputs = gr.inputs.Image(type="pil", label="Upload an image"
|
56 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
57 |
# outputs = gr.outputs.HTML() #uncomment for single class output
|
58 |
|
@@ -84,6 +79,5 @@ gr.Interface(fn=gen_pred,
|
|
84 |
outputs=image_output,
|
85 |
title=title,
|
86 |
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
|
87 |
-
# css=css_code,
|
88 |
description=description,
|
89 |
enable_queue=True).launch()
|
|
|
10 |
from PIL import Image
|
11 |
from matplotlib import cm
|
12 |
|
|
|
13 |
|
14 |
resized_shape = (768, 768, 3)
|
15 |
IMG_SCALING = (1, 1)
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
# Download the model file
|
19 |
def download_model():
|
|
|
29 |
def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
|
30 |
targets = tf.dtypes.cast(K.flatten(y_true), tf.float32)
|
31 |
inputs = tf.dtypes.cast(K.flatten(y_pred), tf.float32)
|
|
|
32 |
intersection = K.sum(targets * inputs)
|
33 |
dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
|
34 |
inputs = K.clip(inputs, eps, 1.0 - eps)
|
|
|
47 |
# Load the model
|
48 |
seg_model = tf.keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
49 |
|
50 |
+
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
51 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
52 |
# outputs = gr.outputs.HTML() #uncomment for single class output
|
53 |
|
|
|
79 |
outputs=image_output,
|
80 |
title=title,
|
81 |
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
|
|
|
82 |
description=description,
|
83 |
enable_queue=True).launch()
|