yuragoithf commited on
Commit
cd397c1
·
1 Parent(s): 07a61bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -52,8 +52,7 @@ def dice_coef(y_true, y_pred, smooth=1):
52
  # Load the model
53
  seg_model = tf.keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
54
 
55
- # inputs = gr.inputs.Image(type="pil", label="Upload an image", source="upload")
56
- inputs = Image.open("./003e2c95d.jpg")
57
  image_output = gr.outputs.Image(type="numpy", label="Output Image")
58
  # outputs = gr.outputs.HTML() #uncomment for single class output
59
 
@@ -61,13 +60,17 @@ def gen_pred(img=inputs, model=seg_model):
61
  # rgb_path = os.path.join(test_image_dir,img)
62
  # img = cv2.imread(rgb_path)
63
  # img = cv2.imread("./003e2c95d.jpg")
 
 
64
  img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
65
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
66
  img = img/255
67
  img = tf.expand_dims(img, axis=0)
68
  pred = model.predict(img)
69
  pred = np.squeeze(pred, axis=0)
70
- return "IN PROGRESS..."
 
 
71
 
72
 
73
  title = "<h1 style='text-align: center;'>Semantic Segmentation</h1>"
 
52
  # Load the model
53
  seg_model = tf.keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
54
 
55
+ inputs = gr.inputs.Image(type="pil", label="Upload an image", source="upload")
 
56
  image_output = gr.outputs.Image(type="numpy", label="Output Image")
57
  # outputs = gr.outputs.HTML() #uncomment for single class output
58
 
 
60
  # rgb_path = os.path.join(test_image_dir,img)
61
  # img = cv2.imread(rgb_path)
62
  # img = cv2.imread("./003e2c95d.jpg")
63
+ pil_image = PIL.Image.open('./003b50a15.jpg')
64
+ img = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)
65
  img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
66
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
67
  img = img/255
68
  img = tf.expand_dims(img, axis=0)
69
  pred = model.predict(img)
70
  pred = np.squeeze(pred, axis=0)
71
+ color_coverted = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
72
+ pil_image = Image.fromarray(color_coverted)
73
+ return pil_image
74
 
75
 
76
  title = "<h1 style='text-align: center;'>Semantic Segmentation</h1>"