Commit
·
d22dc1f
1
Parent(s):
363ec41
Update app.py
Browse files
app.py
CHANGED
@@ -48,15 +48,15 @@ def dice_coef(y_true, y_pred, smooth=1):
|
|
48 |
# Load the model
|
49 |
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
50 |
|
51 |
-
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
52 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
53 |
# outputs = gr.outputs.HTML() #uncomment for single class output
|
54 |
|
55 |
|
56 |
def gen_pred(img, model=seg_model):
|
57 |
-
pil_image = img.convert('RGB')
|
58 |
-
open_cv_image = np.array(pil_image)
|
59 |
-
img = open_cv_image[:, :, ::-1].copy()
|
60 |
# # img = cv2.imread("./003e2c95d.jpg")
|
61 |
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
|
62 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
@@ -64,7 +64,8 @@ def gen_pred(img, model=seg_model):
|
|
64 |
img = tf.expand_dims(img, axis=0)
|
65 |
pred = model.predict(img)
|
66 |
pred = np.squeeze(pred, axis=0)
|
67 |
-
pil_img = Image.fromarray(
|
|
|
68 |
# im = Image.fromarray((pred * 255).astype(np.uint8))
|
69 |
# img_bytes = pred.tobytes()
|
70 |
# nparr = np.frombuffer(img_bytes, np.byte)
|
@@ -77,7 +78,7 @@ description = "Upload an image and get prediction mask"
|
|
77 |
# css_code='body{background-image:url("file=wave.mp4");}'
|
78 |
|
79 |
gr.Interface(fn=gen_pred,
|
80 |
-
inputs=[gr.Image(type='
|
81 |
outputs=gr.Image(type='numpy'),
|
82 |
title=title,
|
83 |
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
|
|
|
48 |
# Load the model
|
49 |
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
50 |
|
51 |
+
# inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
52 |
image_output = gr.outputs.Image(type="pil", label="Output Image")
|
53 |
# outputs = gr.outputs.HTML() #uncomment for single class output
|
54 |
|
55 |
|
56 |
def gen_pred(img, model=seg_model):
|
57 |
+
# pil_image = img.convert('RGB')
|
58 |
+
# open_cv_image = np.array(pil_image)
|
59 |
+
# img = open_cv_image[:, :, ::-1].copy()
|
60 |
# # img = cv2.imread("./003e2c95d.jpg")
|
61 |
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
|
62 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
64 |
img = tf.expand_dims(img, axis=0)
|
65 |
pred = model.predict(img)
|
66 |
pred = np.squeeze(pred, axis=0)
|
67 |
+
pil_img = Image.fromarray((x * 255).astype(np.uint8))
|
68 |
+
# pil_img = Image.fromarray(pred, 'RGB')
|
69 |
# im = Image.fromarray((pred * 255).astype(np.uint8))
|
70 |
# img_bytes = pred.tobytes()
|
71 |
# nparr = np.frombuffer(img_bytes, np.byte)
|
|
|
78 |
# css_code='body{background-image:url("file=wave.mp4");}'
|
79 |
|
80 |
gr.Interface(fn=gen_pred,
|
81 |
+
inputs=[gr.Image(type='numpy')],
|
82 |
outputs=gr.Image(type='numpy'),
|
83 |
title=title,
|
84 |
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
|