Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import numpy as np | |
import os | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
from depth_anything.dpt import DepthAnything | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--video-path', type=str) | |
parser.add_argument('--outdir', type=str, default='./vis_video_depth') | |
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl']) | |
args = parser.parse_args() | |
margin_width = 50 | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(args.encoder)).to(DEVICE).eval() | |
total_params = sum(param.numel() for param in depth_anything.parameters()) | |
print('Total parameters: {:.2f}M'.format(total_params / 1e6)) | |
transform = Compose([ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
if os.path.isfile(args.video_path): | |
if args.video_path.endswith('txt'): | |
with open(args.video_path, 'r') as f: | |
lines = f.read().splitlines() | |
else: | |
filenames = [args.video_path] | |
else: | |
filenames = os.listdir(args.video_path) | |
filenames = [os.path.join(args.video_path, filename) for filename in filenames if not filename.startswith('.')] | |
filenames.sort() | |
os.makedirs(args.outdir, exist_ok=True) | |
for k, filename in enumerate(filenames): | |
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename) | |
raw_video = cv2.VideoCapture(filename) | |
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) | |
output_width = frame_width * 2 + margin_width | |
filename = os.path.basename(filename) | |
output_path = os.path.join(args.outdir, filename[:filename.rfind('.')] + '_video_depth.mp4') | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) | |
while raw_video.isOpened(): | |
ret, raw_frame = raw_video.read() | |
if not ret: | |
break | |
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0 | |
frame = transform({'image': frame})['image'] | |
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE) | |
with torch.no_grad(): | |
depth = depth_anything(frame) | |
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0] | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.cpu().numpy().astype(np.uint8) | |
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) | |
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 | |
combined_frame = cv2.hconcat([raw_frame, split_region, depth_color]) | |
out.write(combined_frame) | |
raw_video.release() | |
out.release() | |