import gradio as gr import cv2 import numpy as np import os from PIL import Image import torch import torch.nn.functional as F from torchvision.transforms import Compose from depth_anything.dpt import DepthAnything from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval() def predict_depthmap(image): original_image = image.copy() h, w = image.shape[:2] image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) with torch.no_grad(): depth = model(image) depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.cpu().numpy().astype(np.uint8) colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] # colored_depth = Image.fromarray(cv2.cvtColor(colored_depth, cv2.COLOR_BGR2RGB)) corlored_depth = Image.fromarray(colored_depth) return colored_depth demo = gr.Interface(fn=predict_depthmap, inputs=[gr.Image()], outputs=[gr.Image(type="pil")] ) demo.launch()