File size: 10,203 Bytes
4d7f8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import tensorflow as tf

def sdp_attention(query, key, value, mask):
    matmul_qk = tf.matmul(query, key, transpose_b=True)
    depth = tf.cast(tf.shape(key)[-1], tf.float32)
    logits = matmul_qk / tf.math.sqrt(depth)
    if mask is not None:
        logits += mask * -1e9
    attention_weights = tf.nn.softmax(logits, axis=-1)
    output = tf.matmul(attention_weights, value)
    return output

class MultiHeadAttention(tf.keras.layers.Layer):
    def __init__(self, num_heads, d_model, **kwargs):
        assert d_model % num_heads == 0
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.d_model = d_model

        self.depth = self.d_model // self.num_heads

        self.query_dense = tf.keras.layers.Dense(self.d_model)
        self.key_dense = tf.keras.layers.Dense(self.d_model)
        self.value_dense = tf.keras.layers.Dense(self.d_model)

        self.dense = tf.keras.layers.Dense(self.d_model)

        
    def get_config(self):
        config = super(MultiHeadAttention, self).get_config()
        config.update({"num_heads": self.num_heads, "d_model": self.d_model})
        return config
    
    def split_heads(self, inputs: tf.Tensor, batch_size: int):
        inputs = tf.keras.layers.Lambda(
            lambda inputs: tf.reshape(
                inputs, shape=(batch_size, -1, self.num_heads, self.depth))
        )(inputs)
        return tf.keras.layers.Lambda(
            lambda inputs: tf.transpose(inputs, perm=[0, 2, 1, 3])
        )(inputs)
    
    def call(self, inputs: tf.Tensor):
        query, key, value, mask = (
            inputs["query"],
            inputs["key"],
            inputs["value"],
            inputs["mask"],
        )
        batch_size = tf.shape(query)[0]

        query = self.query_dense(query)
        key = self.key_dense(key)
        value = self.value_dense(value)

        query = self.split_heads(query, batch_size)
        key = self.split_heads(key, batch_size)
        value = self.split_heads(value, batch_size)

        scaled_attention = sdp_attention(query, key, value, mask)
        scaled_attention = tf.keras.layers.Lambda(
            lambda scaled_attention: tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
        )(scaled_attention)

        concat_attention = tf.keras.layers.Lambda(
            lambda scaled_attention: tf.reshape(
                scaled_attention, (batch_size, -1, self.d_model)
            )
        )(scaled_attention)

        outputs = self.dense(concat_attention)

        return outputs
    
    
def create_padding_mask(x):
    mask = tf.cast(tf.math.equal(x, 0), dtype=tf.float32)
    return mask[:, tf.newaxis, tf.newaxis, :]


def create_look_ahead_mask(x):
    seq_len = tf.shape(x)[1]
    look_ahead_mask = 1 - tf.linalg.band_part(
        tf.ones((seq_len, seq_len), dtype=tf.float32), -1, 0
    )
    padding_mask = create_padding_mask(x)
    return tf.maximum(look_ahead_mask, padding_mask)
    

class PositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, position: int, d_model: int, **kwargs):
        super(PositionalEncoding, self).__init__(**kwargs)
        self.position = position
        self.d_model = d_model
        self.pos_encoding = self.positional_encoding(position, d_model)
        
    def get_config(self):
        config = super(PositionalEncoding, self).get_config()
        config.update({"position": self.position, "d_model": self.d_model})
        return config
    
    def get_angles(self, position: tf.Tensor, i: tf.Tensor, d_model: tf.Tensor):
        angles = 1 / tf.pow(10000, (2 * (i // 2)) / d_model)
        return position * angles
    
    def positional_encoding(self, position: int, d_model: int):
        angle_rads = self.get_angles(
            position=tf.cast(tf.range(position)[:, tf.newaxis], dtype=tf.float32),
            i=tf.cast(tf.range(d_model)[tf.newaxis, :], dtype=tf.float32),
            d_model=tf.cast(d_model, dtype=tf.float32),
        )
        sines = tf.math.sin(angle_rads[:, 0::2])
        cosines = tf.math.cos(angle_rads[:, 1::2])

        pos_encoding = tf.concat([sines, cosines], axis=-1)
        pos_encoding = pos_encoding[tf.newaxis, ...]
        return pos_encoding

    def call(self, inputs: tf.Tensor):
        return inputs + self.pos_encoding[:, : tf.shape(inputs)[1], :]
    
def encoder_layer(hparams, name: str = "encoder_layer"):
    inputs = tf.keras.Input(shape=(None, hparams.d_model), name="inputs")
    padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")

    attention = MultiHeadAttention(
        num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention"
    )({"query": inputs, "key": inputs, "value": inputs, "mask": padding_mask})
    attention = tf.keras.layers.Dropout(hparams.dropout)(attention)
    attention += tf.cast(inputs, dtype=tf.float32)
    attention = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention)

    outputs = tf.keras.layers.Dense(hparams.num_units, activation=hparams.activation)(
        attention
    )
    outputs = tf.keras.layers.Dense(hparams.d_model)(outputs)
    outputs = tf.keras.layers.Dropout(hparams.dropout)(outputs)
    outputs += attention
    outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs)

    return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs, name=name)

def encoder(hparams, name: str = "encoder"):
    inputs = tf.keras.Input(shape=(None,), name="inputs")
    padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")

    embeddings = tf.keras.layers.Embedding(hparams.vocab_size, hparams.d_model)(inputs)
    embeddings *= tf.math.sqrt(tf.cast(hparams.d_model, dtype=tf.float32))
    embeddings = PositionalEncoding(
        position=hparams.vocab_size, d_model=hparams.d_model
    )(embeddings)

    outputs = tf.keras.layers.Dropout(hparams.dropout)(embeddings)

    for i in range(hparams.num_layers):
        outputs = encoder_layer(hparams, name=f"encoder_layer_{i}")(
            [outputs, padding_mask]
        )

    return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs, name=name)

def decoder_layer(hparams, name: str = "decoder_layer"):
    inputs = tf.keras.Input(shape=(None, hparams.d_model), name="inputs")
    enc_outputs = tf.keras.Input(shape=(None, hparams.d_model), name="encoder_outputs")
    look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask")
    padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")

    attention1 = MultiHeadAttention(
        num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention_1"
    )(
        inputs={
            "query": inputs,
            "key": inputs,
            "value": inputs,
            "mask": look_ahead_mask,
        }
    )
    attention1 += tf.cast(inputs, dtype=tf.float32)
    attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1)

    attention2 = MultiHeadAttention(
        num_heads=hparams.num_heads, d_model=hparams.d_model, name="attention_2"
    )(
        inputs={
            "query": attention1,
            "key": enc_outputs,
            "value": enc_outputs,
            "mask": padding_mask,
        }
    )
    attention2 = tf.keras.layers.Dropout(hparams.dropout)(attention2)
    attention2 += attention1
    attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(
        attention2 + attention1
    )

    outputs = tf.keras.layers.Dense(hparams.num_units, activation=hparams.activation)(
        attention2
    )
    outputs = tf.keras.layers.Dense(hparams.d_model)(outputs)
    outputs = tf.keras.layers.Dropout(hparams.dropout)(outputs)
    outputs += attention2
    outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs)

    return tf.keras.Model(
        inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask],
        outputs=outputs,
        name=name,
    )

def decoder(hparams, name: str = "decoder"):
    inputs = tf.keras.Input(shape=(None,), name="inputs")
    enc_outputs = tf.keras.Input(shape=(None, hparams.d_model), name="encoder_outputs")
    look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask")
    padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")

    embeddings = tf.keras.layers.Embedding(hparams.vocab_size, hparams.d_model)(inputs)
    embeddings *= tf.math.sqrt(tf.cast(hparams.d_model, dtype=tf.float32))
    embeddings = PositionalEncoding(
        position=hparams.vocab_size, d_model=hparams.d_model
    )(embeddings)

    outputs = tf.keras.layers.Dropout(hparams.dropout)(embeddings)

    for i in range(hparams.num_layers):
        outputs = decoder_layer(
            hparams,
            name="decoder_layer_{}".format(i),
        )(inputs=[outputs, enc_outputs, look_ahead_mask, padding_mask])

    return tf.keras.Model(
        inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask],
        outputs=outputs,
        name=name,
    )



def transformer(hparams, name: str = "transformer"):
    inputs = tf.keras.Input(shape=(None,), name="inputs")
    dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs")

    enc_padding_mask = tf.keras.layers.Lambda(
        create_padding_mask, output_shape=(1, 1, None), name="enc_padding_mask"
    )(inputs)

    look_ahead_mask = tf.keras.layers.Lambda(
        create_look_ahead_mask, output_shape=(1, None, None), name="look_ahead_mask"
    )(dec_inputs)

    dec_padding_mask = tf.keras.layers.Lambda(
        create_padding_mask, output_shape=(1, 1, None), name="dec_padding_mask"
    )(inputs)

    enc_outputs = encoder(hparams)(inputs=[inputs, enc_padding_mask])

    dec_outputs = decoder(hparams)(
        inputs=[dec_inputs, enc_outputs, look_ahead_mask, dec_padding_mask]
    )

    outputs = tf.keras.layers.Dense(hparams.vocab_size, name="outputs")(dec_outputs)

    return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name)