Spaces:
Sleeping
Sleeping
import argparse | |
import tensorflow as tf | |
import model | |
from dataset import get_dataset, preprocess_sentence | |
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): | |
def __init__(self, d_model: int, warmup_steps: int = 4000): | |
super(CustomSchedule, self).__init__() | |
self.d_model = tf.cast(d_model, dtype=tf.float32) | |
self.warmup_steps = warmup_steps | |
def __call__(self, step): | |
arg1 = tf.math.rsqrt(step) | |
arg2 = step * self.warmup_steps**-1.5 | |
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) | |
def inference(hparams, chatbot, tokenizer, sentence): | |
sentence = preprocess_sentence(sentence) | |
sentence = tf.expand_dims( | |
hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0 | |
) | |
output = tf.expand_dims(hparams.start_token, 0) | |
for _ in range(hparams.max_length): | |
predictions = chatbot(inputs=[sentence, output], training=False) | |
predictions = predictions[:, -1:, :] | |
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) | |
if tf.equal(predicted_id, hparams.end_token[0]): | |
break | |
output = tf.concat([output, predicted_id], axis=-1) | |
return tf.squeeze(output, axis=0) | |
def predict(hparams, chatbot, tokenizer, sentence): | |
prediction = inference(hparams, chatbot, tokenizer, sentence) | |
predicted_sentence = tokenizer.decode( | |
[i for i in prediction if i < tokenizer.vocab_size] | |
) | |
return predicted_sentence | |
def evaluate(hparams, chatbot, tokenizer): | |
print("\nDeğerlendir") | |
sentence = "Merhaba nasılsın?" | |
output = predict(hparams, chatbot, tokenizer, sentence) | |
print(f"input: {sentence}\noutput: {output}") | |
sentence = "Sence de gökyüzü çok güzel değil mi?" | |
output = predict(hparams, chatbot, tokenizer, sentence) | |
print(f"\ninput: {sentence}\noutput: {output}") | |
sentence = "Sanırım uzaklara gideceğim." | |
for _ in range(5): | |
output = predict(hparams, chatbot, tokenizer, sentence) | |
print(f"\ninput: {sentence}\noutput: {output}") | |
sentence = output | |
def main(hparams): | |
tf.keras.utils.set_random_seed(1234) | |
data, token = get_dataset(hparams) | |
chatbot = model.transformer(hparams) | |
optimizer = tf.keras.optimizers.Adam( | |
CustomSchedule(d_model=hparams.d_model), beta_1=0.9, beta_2=0.98, epsilon=1e-9 | |
) | |
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction="none" | |
) | |
def loss_function(y_true, y_pred): | |
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1)) | |
loss = cross_entropy(y_true, y_pred) | |
mask = tf.cast(tf.not_equal(y_true, 0), dtype=tf.float32) | |
loss = tf.multiply(loss, mask) | |
return tf.reduce_mean(loss) | |
def accuracy(y_true, y_pred): | |
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1)) | |
return tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred) | |
chatbot.compile(optimizer, loss=loss_function, metrics=[accuracy]) | |
chatbot.fit(data, epochs=hparams.epochs) | |
print(f"\nmodel {hparams.save_model}'a kaydediliyor...") | |
tf.keras.models.save_model( | |
chatbot, filepath=hparams.save_model, include_optimizer=False | |
) | |
print( | |
f"\nclear TensorFlow backend session and load model f rom {hparams.save_model}..." | |
) | |
del chatbot | |
tf.keras.backend.clear_session() | |
chatbot = tf.keras.models.load_model( | |
hparams.save_model, | |
custom_objects={ | |
"PositionalEncoding": model.PositionalEncoding, | |
"MultiHeadAttention": model.MultiHeadAttention, | |
}, | |
compile=False, | |
) | |
evaluate(hparams, chatbot, token) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save_model", default="model.h5", type=str, help="path save the model" | |
) | |
parser.add_argument( | |
"--max_samples", | |
default=25000, | |
type=int, | |
help="maximum number of conversation pairs to use", | |
) | |
parser.add_argument( | |
"--max_length", default=40, type=int, help="maximum sentence length" | |
) | |
parser.add_argument("--batch_size", default=128, type=int) | |
parser.add_argument("--num_layers", default=2, type=int) | |
parser.add_argument("--num_units", default=512, type=int) | |
parser.add_argument("--d_model", default=512, type=int) | |
parser.add_argument("--num_heads", default=8, type=int) | |
parser.add_argument("--dropout", default=0.1, type=float) | |
parser.add_argument("--activation", default="relu", type=str) | |
parser.add_argument("--epochs", default=70, type=int) | |
main(parser.parse_args()) | |