ilk-chatbot / training.py
yusiqo's picture
Upload 5 files
4d7f8fd verified
import argparse
import tensorflow as tf
import model
from dataset import get_dataset, preprocess_sentence
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model: int, warmup_steps: int = 4000):
super(CustomSchedule, self).__init__()
self.d_model = tf.cast(d_model, dtype=tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * self.warmup_steps**-1.5
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
def inference(hparams, chatbot, tokenizer, sentence):
sentence = preprocess_sentence(sentence)
sentence = tf.expand_dims(
hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
)
output = tf.expand_dims(hparams.start_token, 0)
for _ in range(hparams.max_length):
predictions = chatbot(inputs=[sentence, output], training=False)
predictions = predictions[:, -1:, :]
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
if tf.equal(predicted_id, hparams.end_token[0]):
break
output = tf.concat([output, predicted_id], axis=-1)
return tf.squeeze(output, axis=0)
def predict(hparams, chatbot, tokenizer, sentence):
prediction = inference(hparams, chatbot, tokenizer, sentence)
predicted_sentence = tokenizer.decode(
[i for i in prediction if i < tokenizer.vocab_size]
)
return predicted_sentence
def evaluate(hparams, chatbot, tokenizer):
print("\nDeğerlendir")
sentence = "Merhaba nasılsın?"
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"input: {sentence}\noutput: {output}")
sentence = "Sence de gökyüzü çok güzel değil mi?"
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"\ninput: {sentence}\noutput: {output}")
sentence = "Sanırım uzaklara gideceğim."
for _ in range(5):
output = predict(hparams, chatbot, tokenizer, sentence)
print(f"\ninput: {sentence}\noutput: {output}")
sentence = output
def main(hparams):
tf.keras.utils.set_random_seed(1234)
data, token = get_dataset(hparams)
chatbot = model.transformer(hparams)
optimizer = tf.keras.optimizers.Adam(
CustomSchedule(d_model=hparams.d_model), beta_1=0.9, beta_2=0.98, epsilon=1e-9
)
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
def loss_function(y_true, y_pred):
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
loss = cross_entropy(y_true, y_pred)
mask = tf.cast(tf.not_equal(y_true, 0), dtype=tf.float32)
loss = tf.multiply(loss, mask)
return tf.reduce_mean(loss)
def accuracy(y_true, y_pred):
y_true = tf.reshape(y_true, shape=(-1, hparams.max_length - 1))
return tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
chatbot.compile(optimizer, loss=loss_function, metrics=[accuracy])
chatbot.fit(data, epochs=hparams.epochs)
print(f"\nmodel {hparams.save_model}'a kaydediliyor...")
tf.keras.models.save_model(
chatbot, filepath=hparams.save_model, include_optimizer=False
)
print(
f"\nclear TensorFlow backend session and load model f rom {hparams.save_model}..."
)
del chatbot
tf.keras.backend.clear_session()
chatbot = tf.keras.models.load_model(
hparams.save_model,
custom_objects={
"PositionalEncoding": model.PositionalEncoding,
"MultiHeadAttention": model.MultiHeadAttention,
},
compile=False,
)
evaluate(hparams, chatbot, token)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_model", default="model.h5", type=str, help="path save the model"
)
parser.add_argument(
"--max_samples",
default=25000,
type=int,
help="maximum number of conversation pairs to use",
)
parser.add_argument(
"--max_length", default=40, type=int, help="maximum sentence length"
)
parser.add_argument("--batch_size", default=128, type=int)
parser.add_argument("--num_layers", default=2, type=int)
parser.add_argument("--num_units", default=512, type=int)
parser.add_argument("--d_model", default=512, type=int)
parser.add_argument("--num_heads", default=8, type=int)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--activation", default="relu", type=str)
parser.add_argument("--epochs", default=70, type=int)
main(parser.parse_args())