Spaces:
Sleeping
Sleeping
Rename chatbot.py to app
Browse files- chatbot.py → app +142 -141
chatbot.py → app
RENAMED
@@ -1,141 +1,142 @@
|
|
1 |
-
import argparse
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
append_to_file(lines_file, f"{
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
parser.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
parser.add_argument("--
|
133 |
-
parser.add_argument("--
|
134 |
-
parser.add_argument("--
|
135 |
-
parser.add_argument("--
|
136 |
-
parser.add_argument("--
|
137 |
-
parser.add_argument("--
|
138 |
-
parser.add_argument("--
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
1 |
+
import argparse
|
2 |
+
import streamlit as st
|
3 |
+
import tensorflow as tf
|
4 |
+
import model
|
5 |
+
from dataset import get_dataset, preprocess_sentence
|
6 |
+
|
7 |
+
|
8 |
+
def inference(hparams, chatbot, tokenizer, sentence):
|
9 |
+
sentence = preprocess_sentence(sentence)
|
10 |
+
|
11 |
+
sentence = tf.expand_dims(
|
12 |
+
hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
|
13 |
+
)
|
14 |
+
|
15 |
+
output = tf.expand_dims(hparams.start_token, 0)
|
16 |
+
|
17 |
+
for _ in range(hparams.max_length):
|
18 |
+
predictions = chatbot(inputs=[sentence, output], training=False)
|
19 |
+
|
20 |
+
predictions = predictions[:, -1:, :]
|
21 |
+
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
|
22 |
+
|
23 |
+
if tf.equal(predicted_id, hparams.end_token[0]):
|
24 |
+
break
|
25 |
+
|
26 |
+
output = tf.concat([output, predicted_id], axis=-1)
|
27 |
+
|
28 |
+
return tf.squeeze(output, axis=0)
|
29 |
+
|
30 |
+
|
31 |
+
def predict(hparams, chatbot, tokenizer, sentence):
|
32 |
+
prediction = inference(hparams, chatbot, tokenizer, sentence)
|
33 |
+
predicted_sentence = tokenizer.decode(
|
34 |
+
[i for i in prediction if i < tokenizer.vocab_size]
|
35 |
+
)
|
36 |
+
return predicted_sentence
|
37 |
+
|
38 |
+
def read_file(file_path):
|
39 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
40 |
+
lines = file.readlines()
|
41 |
+
return lines
|
42 |
+
|
43 |
+
def append_to_file(file_path, line):
|
44 |
+
with open(file_path, 'a', encoding='utf-8') as file:
|
45 |
+
file.write(f"{line}\n")
|
46 |
+
|
47 |
+
def get_last_ids(lines_file, conversations_file):
|
48 |
+
lines = read_file(lines_file)
|
49 |
+
conversations = read_file(conversations_file)
|
50 |
+
|
51 |
+
last_line = lines[-1]
|
52 |
+
last_conversation = conversations[-1]
|
53 |
+
|
54 |
+
last_line_id = int(last_line.split(" +++$+++ ")[0][1:])
|
55 |
+
last_user_id = int(last_conversation.split(" +++$+++ ")[1][1:])
|
56 |
+
last_movie_id = int(last_conversation.split(" +++$+++ ")[2][1:])
|
57 |
+
|
58 |
+
return last_line_id, last_user_id, last_movie_id
|
59 |
+
|
60 |
+
def update_data_files(user_input, bot_response, lines_file='data/lines.txt', conversations_file='data/conversations.txt'):
|
61 |
+
last_line_id, last_user_id, last_movie_id = get_last_ids(lines_file, conversations_file)
|
62 |
+
|
63 |
+
new_line_id = f"L{last_line_id + 1}"
|
64 |
+
new_bot_line_id = f"L{last_line_id + 2}"
|
65 |
+
new_user_id = f"u{last_user_id + 1}"
|
66 |
+
new_bot_user_id = f"u{last_user_id + 2}"
|
67 |
+
new_movie_id = f"m{last_movie_id + 1}"
|
68 |
+
|
69 |
+
append_to_file(lines_file, f"{new_line_id} +++$+++ {new_user_id} +++$+++ {new_movie_id} +++$+++ Ben +++$+++ {user_input}")
|
70 |
+
append_to_file(lines_file, f"{new_bot_line_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ Bot +++$+++ {bot_response}")
|
71 |
+
|
72 |
+
new_conversation = f"{new_user_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ ['{new_line_id}', '{new_bot_line_id}']"
|
73 |
+
append_to_file(conversations_file, new_conversation)
|
74 |
+
|
75 |
+
def get_feedback():
|
76 |
+
feedback = input("Bu cevap yardımcı oldu mu? (Evet/Hayır): ").lower()
|
77 |
+
return feedback == "Evet"
|
78 |
+
|
79 |
+
def chat(hparams, chatbot, tokenizer):
|
80 |
+
print("\nCHATBOT")
|
81 |
+
|
82 |
+
for _ in range(5):
|
83 |
+
sentence = st.text_area("Sen: ")
|
84 |
+
output = predict(hparams, chatbot, tokenizer, sentence)
|
85 |
+
st.json(output)
|
86 |
+
|
87 |
+
|
88 |
+
user_input = sentence
|
89 |
+
bot_response = output
|
90 |
+
|
91 |
+
feedback = get_feedback()
|
92 |
+
|
93 |
+
if feedback:
|
94 |
+
update_data_files(user_input, bot_response)
|
95 |
+
else:
|
96 |
+
pass
|
97 |
+
|
98 |
+
|
99 |
+
def main(hparams):
|
100 |
+
|
101 |
+
_, token = get_dataset(hparams)
|
102 |
+
|
103 |
+
tf.keras.backend.clear_session()
|
104 |
+
chatbot = tf.keras.models.load_model(
|
105 |
+
hparams.save_model,
|
106 |
+
custom_objects={
|
107 |
+
"PositionalEncoding": model.PositionalEncoding,
|
108 |
+
"MultiHeadAttention": model.MultiHeadAttention,
|
109 |
+
},
|
110 |
+
compile=False,
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
chat(hparams, chatbot, token)
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
|
119 |
+
parser = argparse.ArgumentParser()
|
120 |
+
parser.add_argument(
|
121 |
+
"--save_model", default="model.h5", type=str, help="path save the model"
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--max_samples",
|
125 |
+
default=25000,
|
126 |
+
type=int,
|
127 |
+
help="maximum number of conversation pairs to use",
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--max_length", default=40, type=int, help="maximum sentence length"
|
131 |
+
)
|
132 |
+
parser.add_argument("--batch_size", default=64, type=int)
|
133 |
+
parser.add_argument("--num_layers", default=2, type=int)
|
134 |
+
parser.add_argument("--num_units", default=512, type=int)
|
135 |
+
parser.add_argument("--d_model", default=256, type=int)
|
136 |
+
parser.add_argument("--num_heads", default=8, type=int)
|
137 |
+
parser.add_argument("--dropout", default=0.1, type=float)
|
138 |
+
parser.add_argument("--activation", default="relu", type=str)
|
139 |
+
parser.add_argument("--epochs", default=80, type=int)
|
140 |
+
|
141 |
+
main(parser.parse_args())
|
142 |
+
|