yusiqo commited on
Commit
9f712c4
·
verified ·
1 Parent(s): 175d958

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -141
app.py CHANGED
@@ -1,142 +1,32 @@
1
- import argparse
2
  import streamlit as st
3
- import tensorflow as tf
4
- import model
5
- from dataset import get_dataset, preprocess_sentence
6
-
7
-
8
- def inference(hparams, chatbot, tokenizer, sentence):
9
- sentence = preprocess_sentence(sentence)
10
-
11
- sentence = tf.expand_dims(
12
- hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
13
- )
14
-
15
- output = tf.expand_dims(hparams.start_token, 0)
16
-
17
- for _ in range(hparams.max_length):
18
- predictions = chatbot(inputs=[sentence, output], training=False)
19
-
20
- predictions = predictions[:, -1:, :]
21
- predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
22
-
23
- if tf.equal(predicted_id, hparams.end_token[0]):
24
- break
25
-
26
- output = tf.concat([output, predicted_id], axis=-1)
27
-
28
- return tf.squeeze(output, axis=0)
29
-
30
-
31
- def predict(hparams, chatbot, tokenizer, sentence):
32
- prediction = inference(hparams, chatbot, tokenizer, sentence)
33
- predicted_sentence = tokenizer.decode(
34
- [i for i in prediction if i < tokenizer.vocab_size]
35
- )
36
- return predicted_sentence
37
-
38
- def read_file(file_path):
39
- with open(file_path, 'r', encoding='utf-8') as file:
40
- lines = file.readlines()
41
- return lines
42
-
43
- def append_to_file(file_path, line):
44
- with open(file_path, 'a', encoding='utf-8') as file:
45
- file.write(f"{line}\n")
46
-
47
- def get_last_ids(lines_file, conversations_file):
48
- lines = read_file(lines_file)
49
- conversations = read_file(conversations_file)
50
-
51
- last_line = lines[-1]
52
- last_conversation = conversations[-1]
53
-
54
- last_line_id = int(last_line.split(" +++$+++ ")[0][1:])
55
- last_user_id = int(last_conversation.split(" +++$+++ ")[1][1:])
56
- last_movie_id = int(last_conversation.split(" +++$+++ ")[2][1:])
57
-
58
- return last_line_id, last_user_id, last_movie_id
59
-
60
- def update_data_files(user_input, bot_response, lines_file='data/lines.txt', conversations_file='data/conversations.txt'):
61
- last_line_id, last_user_id, last_movie_id = get_last_ids(lines_file, conversations_file)
62
-
63
- new_line_id = f"L{last_line_id + 1}"
64
- new_bot_line_id = f"L{last_line_id + 2}"
65
- new_user_id = f"u{last_user_id + 1}"
66
- new_bot_user_id = f"u{last_user_id + 2}"
67
- new_movie_id = f"m{last_movie_id + 1}"
68
-
69
- append_to_file(lines_file, f"{new_line_id} +++$+++ {new_user_id} +++$+++ {new_movie_id} +++$+++ Ben +++$+++ {user_input}")
70
- append_to_file(lines_file, f"{new_bot_line_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ Bot +++$+++ {bot_response}")
71
-
72
- new_conversation = f"{new_user_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ ['{new_line_id}', '{new_bot_line_id}']"
73
- append_to_file(conversations_file, new_conversation)
74
-
75
- def get_feedback():
76
- feedback = input("Bu cevap yardımcı oldu mu? (Evet/Hayır): ").lower()
77
- return feedback == "Evet"
78
-
79
- def chat(hparams, chatbot, tokenizer):
80
- print("\nCHATBOT")
81
-
82
- for _ in range(5):
83
- sentence = st.text_area("Sen: ")
84
- output = predict(hparams, chatbot, tokenizer, sentence)
85
- st.json(output)
86
-
87
-
88
- user_input = sentence
89
- bot_response = output
90
-
91
- feedback = get_feedback()
92
-
93
- if feedback:
94
- update_data_files(user_input, bot_response)
95
- else:
96
- pass
97
-
98
-
99
- def main(hparams):
100
-
101
- _, token = get_dataset(hparams)
102
-
103
- tf.keras.backend.clear_session()
104
- chatbot = tf.keras.models.load_model(
105
- hparams.save_model,
106
- custom_objects={
107
- "PositionalEncoding": model.PositionalEncoding,
108
- "MultiHeadAttention": model.MultiHeadAttention,
109
- },
110
- compile=False,
111
- )
112
-
113
-
114
- chat(hparams, chatbot, token)
115
-
116
-
117
- if __name__ == "__main__":
118
-
119
- parser = argparse.ArgumentParser()
120
- parser.add_argument(
121
- "--save_model", default="model.h5", type=str, help="path save the model"
122
- )
123
- parser.add_argument(
124
- "--max_samples",
125
- default=25000,
126
- type=int,
127
- help="maximum number of conversation pairs to use",
128
- )
129
- parser.add_argument(
130
- "--max_length", default=40, type=int, help="maximum sentence length"
131
- )
132
- parser.add_argument("--batch_size", default=64, type=int)
133
- parser.add_argument("--num_layers", default=2, type=int)
134
- parser.add_argument("--num_units", default=512, type=int)
135
- parser.add_argument("--d_model", default=256, type=int)
136
- parser.add_argument("--num_heads", default=8, type=int)
137
- parser.add_argument("--dropout", default=0.1, type=float)
138
- parser.add_argument("--activation", default="relu", type=str)
139
- parser.add_argument("--epochs", default=80, type=int)
140
-
141
- main(parser.parse_args())
142
-
 
1
+ import nltk
2
  import streamlit as st
3
+ from nltk.chat.util import Chat, reflections
4
+
5
+ # Eğitim veri seti
6
+ training_data = [
7
+ ("Benim adım (.*)", ["Merhaba %1, nasıl yardımcı olabilirim?"]),
8
+ ("merhaba|selam|hey", ["Merhaba, size nasıl yardımcı olabilirim?"]),
9
+ ("nasılsın|naber", ["İyi, teşekkür ederim. Siz nasılsınız?"]),
10
+ ("(iyiyim|teşekkürler), seninle konuşmaktan keyif alıyorum", ["Ben de sizinle konuşmaktan keyif alıyorum. Size nasıl yardımcı olabilirim?"]),
11
+ ("çıkış|kapat|sonlandır", ["Görüşürüz, umarım tekrar görüşürüz!"]),
12
+ ]
13
+
14
+ # NLTK chat için eğitim
15
+ def train_bot(training_data):
16
+ chatbot = Chat(training_data, reflections)
17
+ return chatbot
18
+
19
+ # Sohbet botunu eğitme
20
+ chatbot = train_bot(training_data)
21
+
22
+ # Sohbet botunu çalıştırma
23
+ def run_chatbot():
24
+ print("Merhaba! Benim adım ChatBot. Size nasıl yardımcı olabilirim? (Çıkış için 'çıkış' yazabilirsiniz)")
25
+
26
+ while True:
27
+ user_input = st.text_area("Siz: ")
28
+ response = chatbot.respond(user_input)
29
+ print("ChatBot:", response)
30
+
31
+ # Sohbet botunu başlat
32
+ run_chatbot()