File size: 1,431 Bytes
25c2cee df85698 25c2cee df85698 25c2cee df85698 25c2cee df85698 25c2cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing import image
import numpy as np
model = from_pretrained_keras("yusyel/clothing")
class_names=["dress",
"hat",
"longsleee",
"outwear",
"pants",
"shirt",
"shoes",
"shorts",
"skirt",
"t-shirt"]
def preprocess_image(img):
img = load_img(img, target_size=(299, 299, 3))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img /= 255.0
print(img.shape)
return img
def predict(img):
img = preprocess_image(img)
pred = model.predict(img)
print(pred)
pred = np.round(np.squeeze(pred).astype(float),5)
print(pred)
return dict(zip(class_names, pred))
demo = gr.Interface(
fn=predict,
inputs=[gr.inputs.Image(type="filepath")],
outputs=gr.outputs.Label(),
examples=[
["./img/dress.jpg"],
["./img/hat.jpg"],
["./img/longsleeve.jpg"],
["./img/outwear.jpg"],
["./img/pants.jpg"],
["./img/shirt.jpg"],
["./img/shoes.jpg"],
["./img/short.jpg"],
["./img/skirt.jpg"],
["./img/t-shirt.jpg"],
],
title="fish classification",
)
demo.launch(server_name="0.0.0.0", server_port=7860)
|