yutakobayashi's picture
πŸŽ‰ initial commit
eae3ee1
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
embeddings = HuggingFaceEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
def chat(openai_key,message, history,file):
history = history or []
loader = PyPDFLoader(file.name)
documents = loader.load()
texts = text_splitter.split_documents(documents)
vectordb = Chroma.from_documents(texts, embeddings)
qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0,model_name="gpt-3.5-turbo",openai_api_key=openai_key), chain_type="stuff", retriever=vectordb.as_retriever())
answer = qa.run(message)
history.append((message, answer))
return history, history
inputs = [
gr.Textbox(lines=1, label="OpenAI API Key",placeholder="openai api here...", type="password"),
gr.Textbox(lines=2,label="prompt"),
gr.State([]),
gr.File(label="PDF File")
]
outputs = [
gr.Chatbot(label="Chatbot"),
gr.State([])
]
app = gr.Interface(
fn=chat,
inputs=inputs,
outputs=outputs,
allow_flagging='never',
)
if __name__ == '__main__':
app.launch()