File size: 1,912 Bytes
82ef366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def masked_adain(content_feat, style_feat, content_mask, style_mask):
    assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat, mask=style_mask)
    content_mean, content_std = calc_mean_std(content_feat, mask=content_mask)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
    style_normalized_feat = normalized_feat * style_std.expand(size) + style_mean.expand(size)
    return content_feat * (1 - content_mask) + style_normalized_feat * content_mask


def calc_mean_std(feat, eps=1e-5, mask=None):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    if len(size) == 2:
        return calc_mean_std_2d(feat, eps, mask)

    assert (len(size) == 3)
    C = size[0]
    if mask is not None:
        feat_var = feat.view(C, -1)[:, mask.view(-1) == 1].var(dim=1) + eps
        feat_std = feat_var.sqrt().view(C, 1, 1)
        feat_mean = feat.view(C, -1)[:, mask.view(-1) == 1].mean(dim=1).view(C, 1, 1)
    else:
        feat_var = feat.view(C, -1).var(dim=1) + eps
        feat_std = feat_var.sqrt().view(C, 1, 1)
        feat_mean = feat.view(C, -1).mean(dim=1).view(C, 1, 1)

    return feat_mean, feat_std


def calc_mean_std_2d(feat, eps=1e-5, mask=None):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 2)
    C = size[0]
    if mask is not None:
        feat_var = feat.view(C, -1)[:, mask.view(-1) == 1].var(dim=1) + eps
        feat_std = feat_var.sqrt().view(C, 1)
        feat_mean = feat.view(C, -1)[:, mask.view(-1) == 1].mean(dim=1).view(C, 1)
    else:
        feat_var = feat.view(C, -1).var(dim=1) + eps
        feat_std = feat_var.sqrt().view(C, 1)
        feat_mean = feat.view(C, -1).mean(dim=1).view(C, 1)

    return feat_mean, feat_std