yvankob commited on
Commit
03da8e7
·
1 Parent(s): ceeaa74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -10,6 +10,9 @@ from flores200_codes import flores_codes
10
  import tempfile
11
  import os
12
 
 
 
 
13
  MODEL_NAME = "openai/whisper-large-v2"
14
  BATCH_SIZE = 8
15
  FILE_LIMIT_MB = 1000
@@ -49,7 +52,7 @@ def transcribe(inputs, task):
49
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
50
 
51
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
52
- translated_text = translate_text(text, source_language, target_language)
53
  return text, translated_text
54
 
55
 
@@ -106,8 +109,9 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
106
  inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
107
 
108
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
 
109
 
110
- return html_embed_str, text
111
 
112
 
113
  lang_codes = list(flores_codes.keys())
@@ -163,7 +167,7 @@ yt_transcribe = gr.Interface(
163
  gr.inputs.Dropdown(lang_codes, default='English', label='Source Language'),
164
  gr.inputs.Dropdown(lang_codes, default='French', label='Target Language'),
165
  ],
166
- outputs=["html", "text"],
167
  layout="horizontal",
168
  theme="huggingface",
169
  title="Whisper Large V2: Transcribe YouTube",
 
10
  import tempfile
11
  import os
12
 
13
+ global model_dict
14
+ model_dict = load_models()
15
+
16
  MODEL_NAME = "openai/whisper-large-v2"
17
  BATCH_SIZE = 8
18
  FILE_LIMIT_MB = 1000
 
52
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
53
 
54
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
55
+ translated_text = translation(source_lang, target_lang, text)["result"]
56
  return text, translated_text
57
 
58
 
 
109
  inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
110
 
111
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
112
+ translated_text = translation(source_lang, target_lang, text)["result"]
113
 
114
+ return html_embed_str, text, translated_text
115
 
116
 
117
  lang_codes = list(flores_codes.keys())
 
167
  gr.inputs.Dropdown(lang_codes, default='English', label='Source Language'),
168
  gr.inputs.Dropdown(lang_codes, default='French', label='Target Language'),
169
  ],
170
+ outputs=["html", "text", "translated_text"],
171
  layout="horizontal",
172
  theme="huggingface",
173
  title="Whisper Large V2: Transcribe YouTube",