Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,10 @@ import gradio as gr
|
|
4 |
import yt_dlp as youtube_dl
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
8 |
-
from flores200_codes import flores_codes
|
9 |
-
from gradio.components import Audio, Dropdown, Radio, Textbox
|
10 |
|
11 |
import tempfile
|
12 |
import os
|
13 |
|
14 |
-
|
15 |
MODEL_NAME = "openai/whisper-large-v2"
|
16 |
BATCH_SIZE = 8
|
17 |
FILE_LIMIT_MB = 1000
|
@@ -27,69 +23,12 @@ pipe = pipeline(
|
|
27 |
)
|
28 |
|
29 |
|
30 |
-
def
|
31 |
-
# build model and tokenizer
|
32 |
-
model_name_dict = {
|
33 |
-
'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
34 |
-
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
35 |
-
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
36 |
-
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
37 |
-
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
38 |
-
# 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
39 |
-
}
|
40 |
-
|
41 |
-
model_dict = {}
|
42 |
-
|
43 |
-
for call_name, real_name in model_name_dict.items():
|
44 |
-
print('\tLoading model: %s' % call_name)
|
45 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
47 |
-
model_dict[call_name+'_model'] = model
|
48 |
-
model_dict[call_name+'_tokenizer'] = tokenizer
|
49 |
-
|
50 |
-
return model_dict
|
51 |
-
|
52 |
-
def translation(source, target, text):
|
53 |
-
try:
|
54 |
-
print("Début de la traduction")
|
55 |
-
if len(model_dict) == 2:
|
56 |
-
model_name = 'nllb-distilled-1.3B'
|
57 |
-
|
58 |
-
start_time = time.time()
|
59 |
-
source = flores_codes[source]
|
60 |
-
target = flores_codes[target]
|
61 |
-
|
62 |
-
model = model_dict[model_name + '_model']
|
63 |
-
tokenizer = model_dict[model_name + '_tokenizer']
|
64 |
-
|
65 |
-
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
|
66 |
-
output = translator(text, max_length=400)
|
67 |
-
|
68 |
-
end_time = time.time()
|
69 |
-
|
70 |
-
output = output[0]['translation_text']
|
71 |
-
result = {'inference_time': end_time - start_time,
|
72 |
-
'source': source,
|
73 |
-
'target': target,
|
74 |
-
'result': output}
|
75 |
-
print("Fin de la transcription")
|
76 |
-
except Exception as e:
|
77 |
-
print(f"Erreur lors de la transcription : {e}")
|
78 |
-
return result
|
79 |
-
|
80 |
-
|
81 |
-
def transcribe(inputs, task, source, target):
|
82 |
if inputs is None:
|
83 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
88 |
-
translated_text = translation(source, target, text)
|
89 |
-
print("Fin de la transcription")
|
90 |
-
except Exception as e:
|
91 |
-
print(f"Erreur lors de la transcription : {e}")
|
92 |
-
return text, translated_text
|
93 |
|
94 |
|
95 |
def _return_yt_html_embed(yt_url):
|
@@ -102,29 +41,29 @@ def _return_yt_html_embed(yt_url):
|
|
102 |
|
103 |
def download_yt_audio(yt_url, filename):
|
104 |
info_loader = youtube_dl.YoutubeDL()
|
105 |
-
|
106 |
try:
|
107 |
info = info_loader.extract_info(yt_url, download=False)
|
108 |
except youtube_dl.utils.DownloadError as err:
|
109 |
raise gr.Error(str(err))
|
110 |
-
|
111 |
file_length = info["duration_string"]
|
112 |
file_h_m_s = file_length.split(":")
|
113 |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
114 |
-
|
115 |
if len(file_h_m_s) == 1:
|
116 |
file_h_m_s.insert(0, 0)
|
117 |
if len(file_h_m_s) == 2:
|
118 |
file_h_m_s.insert(0, 0)
|
119 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
120 |
-
|
121 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
122 |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
123 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
124 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
125 |
-
|
126 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
127 |
-
|
128 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
129 |
try:
|
130 |
ydl.download([yt_url])
|
@@ -145,28 +84,19 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
145 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
146 |
|
147 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
148 |
-
translated_text = translation(source, target, text)
|
149 |
-
|
150 |
-
return html_embed_str, text, translated_text
|
151 |
|
152 |
-
|
153 |
-
global model_dict
|
154 |
-
model_dict = load_models()
|
155 |
|
156 |
|
157 |
demo = gr.Blocks()
|
158 |
|
159 |
-
lang_codes = list(flores_codes.keys())
|
160 |
-
|
161 |
mf_transcribe = gr.Interface(
|
162 |
fn=transcribe,
|
163 |
inputs=[
|
164 |
-
Audio(source="microphone", type="filepath"),
|
165 |
-
Radio(["transcribe", "translate"], label="Task"),
|
166 |
-
Dropdown(lang_codes, default='English', label='Source'),
|
167 |
-
Dropdown(lang_codes, default='French', label='Target'),
|
168 |
],
|
169 |
-
outputs=
|
170 |
layout="horizontal",
|
171 |
theme="huggingface",
|
172 |
title="Whisper Large V2: Transcribe Audio",
|
@@ -181,12 +111,10 @@ mf_transcribe = gr.Interface(
|
|
181 |
file_transcribe = gr.Interface(
|
182 |
fn=transcribe,
|
183 |
inputs=[
|
184 |
-
Audio(source="upload", type="filepath", label="Audio file"),
|
185 |
-
Radio(["transcribe", "translate"], label="Task"),
|
186 |
-
Dropdown(lang_codes, default='English', label='Source'),
|
187 |
-
Dropdown(lang_codes, default='French', label='Target'),
|
188 |
],
|
189 |
-
outputs=
|
190 |
layout="horizontal",
|
191 |
theme="huggingface",
|
192 |
title="Whisper Large V2: Transcribe Audio",
|
@@ -201,12 +129,10 @@ file_transcribe = gr.Interface(
|
|
201 |
yt_transcribe = gr.Interface(
|
202 |
fn=yt_transcribe,
|
203 |
inputs=[
|
204 |
-
Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
205 |
-
Radio(["transcribe", "translate"], label="Task")
|
206 |
-
Dropdown(lang_codes, default='English', label='Source'),
|
207 |
-
Dropdown(lang_codes, default='French', label='Target'),
|
208 |
],
|
209 |
-
outputs=[
|
210 |
layout="horizontal",
|
211 |
theme="huggingface",
|
212 |
title="Whisper Large V2: Transcribe YouTube",
|
@@ -221,5 +147,5 @@ yt_transcribe = gr.Interface(
|
|
221 |
with demo:
|
222 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
223 |
|
224 |
-
demo.launch()
|
225 |
|
|
|
4 |
import yt_dlp as youtube_dl
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
|
|
|
|
7 |
|
8 |
import tempfile
|
9 |
import os
|
10 |
|
|
|
11 |
MODEL_NAME = "openai/whisper-large-v2"
|
12 |
BATCH_SIZE = 8
|
13 |
FILE_LIMIT_MB = 1000
|
|
|
23 |
)
|
24 |
|
25 |
|
26 |
+
def transcribe(inputs, task):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if inputs is None:
|
28 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
29 |
|
30 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
31 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
def _return_yt_html_embed(yt_url):
|
|
|
41 |
|
42 |
def download_yt_audio(yt_url, filename):
|
43 |
info_loader = youtube_dl.YoutubeDL()
|
44 |
+
|
45 |
try:
|
46 |
info = info_loader.extract_info(yt_url, download=False)
|
47 |
except youtube_dl.utils.DownloadError as err:
|
48 |
raise gr.Error(str(err))
|
49 |
+
|
50 |
file_length = info["duration_string"]
|
51 |
file_h_m_s = file_length.split(":")
|
52 |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
53 |
+
|
54 |
if len(file_h_m_s) == 1:
|
55 |
file_h_m_s.insert(0, 0)
|
56 |
if len(file_h_m_s) == 2:
|
57 |
file_h_m_s.insert(0, 0)
|
58 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
59 |
+
|
60 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
61 |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
62 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
63 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
64 |
+
|
65 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
66 |
+
|
67 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
68 |
try:
|
69 |
ydl.download([yt_url])
|
|
|
84 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
85 |
|
86 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
|
|
|
|
|
87 |
|
88 |
+
return html_embed_str, text
|
|
|
|
|
89 |
|
90 |
|
91 |
demo = gr.Blocks()
|
92 |
|
|
|
|
|
93 |
mf_transcribe = gr.Interface(
|
94 |
fn=transcribe,
|
95 |
inputs=[
|
96 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
97 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
|
|
|
|
98 |
],
|
99 |
+
outputs="text",
|
100 |
layout="horizontal",
|
101 |
theme="huggingface",
|
102 |
title="Whisper Large V2: Transcribe Audio",
|
|
|
111 |
file_transcribe = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
inputs=[
|
114 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
115 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
|
|
|
|
116 |
],
|
117 |
+
outputs="text",
|
118 |
layout="horizontal",
|
119 |
theme="huggingface",
|
120 |
title="Whisper Large V2: Transcribe Audio",
|
|
|
129 |
yt_transcribe = gr.Interface(
|
130 |
fn=yt_transcribe,
|
131 |
inputs=[
|
132 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
133 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
|
|
|
|
134 |
],
|
135 |
+
outputs=["html", "text"],
|
136 |
layout="horizontal",
|
137 |
theme="huggingface",
|
138 |
title="Whisper Large V2: Transcribe YouTube",
|
|
|
147 |
with demo:
|
148 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
149 |
|
150 |
+
demo.launch(enable_queue=True)
|
151 |
|