import torch import gradio as gr from faster_whisper import WhisperModel from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from pydub import AudioSegment import yt_dlp as youtube_dl import tempfile from transformers.pipelines.audio_utils import ffmpeg_read from gradio.components import Audio, Dropdown, Radio, Textbox import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # Paramètres FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # Limite de 1 heure pour les vidéos YouTube # Charger les codes de langue from flores200_codes import flores_codes # Fonction pour déterminer le device def set_device(): return torch.device("cuda" if torch.cuda.is_available() else "cpu") device = set_device() # Charger les modèles une seule fois model_dict = {} def load_models(): global model_dict if not model_dict: model_name_dict = { #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M', #'nllb-1.3B': 'facebook/nllb-200-1.3B', #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', #'nllb-3.3B': 'facebook/nllb-200-3.3B', # 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M', } for call_name, real_name in model_name_dict.items(): model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name+'_model'] = model model_dict[call_name+'_tokenizer'] = tokenizer load_models() # Fonction pour la transcription def transcribe_audio(audio_file): model_size = "large-v2" model = WhisperModel(model_size) # model = WhisperModel(model_size, device=device, compute_type="int8") segments, _ = model.transcribe(audio_file, beam_size=1) transcriptions = [("[%.2fs -> %.2fs]" % (seg.start, seg.end), seg.text) for seg in segments] return transcriptions # Fonction pour la traduction def traduction(text, source_lang, target_lang): model_name = "nllb-distilled-600M" model = model_dict[model_name + "_model"] tokenizer = model_dict[model_name + "_tokenizer"] translator = pipeline("translation", model=model, tokenizer=tokenizer) return translator(text, src_lang=flores_codes[source_lang], tgt_lang=flores_codes[target_lang])[0]["translation_text"] # Fonction principale def full_transcription_and_translation(audio_file, source_lang, target_lang): if audio_file.startswith("http"): audio_file = download_yt_audio(audio_file) transcriptions = transcribe_audio(audio_file) translations = [(timestamp, traduction(text, source_lang, target_lang)) for timestamp, text in transcriptions] return transcriptions, translations # Téléchargement audio YouTube def download_yt_audio(yt_url): with tempfile.NamedTemporaryFile(suffix='.mp3') as f: ydl_opts = { 'format': 'bestaudio/best', 'outtmpl': f.name, 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) return f.name lang_codes = list(flores_codes.keys()) # Interface Gradio def gradio_interface(audio_file, source_lang, target_lang): if audio_file.startswith("http"): audio_file = download_yt_audio(audio_file) transcriptions, translations = full_transcription_and_translation(audio_file, source_lang, target_lang) transcribed_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in transcriptions]) translated_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in translations]) return transcribed_text, translated_text iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Audio(type="filepath"), gr.Dropdown(lang_codes, value='French', label='Source Language'), gr.Dropdown(lang_codes, value='English', label='Target Language'), ], outputs=[ gr.Textbox(label="Transcribed Text"), gr.Textbox(label="Translated Text") ] ) iface.launch()