Spaces:
Running
Running
import asyncio | |
import json | |
import sys | |
import uuid | |
import base64 | |
import re | |
import os | |
import argparse | |
from datetime import datetime, timezone | |
from typing import List, Optional | |
import httpx | |
import uvicorn | |
from fastapi import ( | |
BackgroundTasks, | |
FastAPI, | |
HTTPException, | |
Request, | |
Response, | |
status, | |
) | |
from fastapi.responses import HTMLResponse, JSONResponse, StreamingResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.staticfiles import StaticFiles | |
from bearer_token import BearerTokenGenerator | |
# 模型列表 | |
MODELS = ["gpt-4o", "gpt-4o-mini", "claude-3-5-sonnet", "claude"] | |
# 默认端口 | |
INITIAL_PORT = 3000 | |
# 外部API的URL | |
EXTERNAL_API_URL = "https://api.chaton.ai/chats/stream" | |
# 初始化FastAPI应用 | |
app = FastAPI() | |
# 添加CORS中间件 | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # 允许所有来源 | |
allow_credentials=True, | |
allow_methods=["GET", "POST", "OPTIONS"], # 允许GET, POST, OPTIONS方法 | |
allow_headers=["Content-Type", "Authorization"], # 允许的头部 | |
) | |
# 挂载静态文件路由以提供 images 目录的内容 | |
app.mount("/images", StaticFiles(directory="images"), name="images") | |
# 辅助函数 | |
def send_error_response(message: str, status_code: int = 400): | |
"""构建错误响应,并确保包含CORS头""" | |
error_json = {"error": message} | |
headers = { | |
"Access-Control-Allow-Origin": "*", | |
"Access-Control-Allow-Methods": "GET, POST, OPTIONS", | |
"Access-Control-Allow-Headers": "Content-Type, Authorization", | |
} | |
return JSONResponse(status_code=status_code, content=error_json, headers=headers) | |
def extract_path_from_markdown(markdown: str) -> Optional[str]: | |
""" | |
提取 Markdown 图片链接中的路径,匹配以 https://spc.unk/ 开头的 URL | |
""" | |
pattern = re.compile(r'!\[.*?\]\(https://spc\.unk/(.*?)\)') | |
match = pattern.search(markdown) | |
if match: | |
return match.group(1) | |
return None | |
async def fetch_get_url_from_storage(storage_url: str) -> Optional[str]: | |
""" | |
从 storage URL 获取 JSON 并提取 getUrl | |
""" | |
async with httpx.AsyncClient() as client: | |
try: | |
response = await client.get(storage_url) | |
if response.status_code != 200: | |
print(f"获取 storage URL 失败,状态码: {response.status_code}") | |
return None | |
json_response = response.json() | |
return json_response.get("getUrl") | |
except Exception as e: | |
print(f"Error fetching getUrl from storage: {e}") | |
return None | |
async def download_image(image_url: str) -> Optional[bytes]: | |
""" | |
下载图像 | |
""" | |
async with httpx.AsyncClient() as client: | |
try: | |
response = await client.get(image_url) | |
if response.status_code == 200: | |
return response.content | |
else: | |
print(f"下载图像失败,状态码: {response.status_code}") | |
return None | |
except Exception as e: | |
print(f"Error downloading image: {e}") | |
return None | |
def save_base64_image(base64_str: str, images_dir: str = "images") -> str: | |
""" | |
将Base64编码的图片保存到images目录,返回文件名 | |
""" | |
if not os.path.exists(images_dir): | |
os.makedirs(images_dir) | |
image_data = base64.b64decode(base64_str) | |
filename = f"{uuid.uuid4()}.png" # 默认保存为png格式 | |
file_path = os.path.join(images_dir, filename) | |
with open(file_path, "wb") as f: | |
f.write(image_data) | |
return filename | |
def is_base64_image(url: str) -> bool: | |
""" | |
判断URL是否为Base64编码的图片 | |
""" | |
return url.startswith("data:image/") | |
# 根路径GET请求处理 | |
async def read_root(): | |
"""返回欢迎页面""" | |
html_content = """ | |
<html> | |
<head> | |
<title>Welcome to API</title> | |
</head> | |
<body> | |
<h1>Welcome to API</h1> | |
<p>This API is used to interact with the ChatGPT model. You can send messages to the model and receive responses.</p> | |
</body> | |
</html> | |
""" | |
return HTMLResponse(content=html_content, status_code=200) | |
# 聊天完成处理 | |
async def chat_completions(request: Request, background_tasks: BackgroundTasks): | |
""" | |
处理聊天完成请求 | |
""" | |
try: | |
request_body = await request.json() | |
except json.JSONDecodeError: | |
raise HTTPException(status_code=400, detail="Invalid JSON") | |
# 打印接收到的请求 | |
print("Received Completion JSON:", json.dumps(request_body, ensure_ascii=False)) | |
# 处理消息内容 | |
messages = request_body.get("messages", []) | |
temperature = request_body.get("temperature", 1.0) | |
top_p = request_body.get("top_p", 1.0) | |
max_tokens = request_body.get("max_tokens", 8000) | |
model = request_body.get("model", "gpt-4o") | |
is_stream = request_body.get("stream", False) # 获取 stream 字段 | |
has_image = False | |
has_text = False | |
# 清理和提取消息内容 | |
cleaned_messages = [] | |
for message in messages: | |
content = message.get("content", "") | |
if isinstance(content, list): | |
text_parts = [] | |
images = [] | |
for item in content: | |
if "text" in item: | |
text_parts.append(item.get("text", "")) | |
elif "image_url" in item: | |
has_image = True | |
image_info = item.get("image_url", {}) | |
url = image_info.get("url", "") | |
if is_base64_image(url): | |
# 解码并保存图片 | |
base64_str = url.split(",")[1] | |
filename = save_base64_image(base64_str) | |
base_url = app.state.base_url | |
image_url = f"{base_url}/images/{filename}" | |
images.append({"data": image_url}) | |
else: | |
images.append({"data": url}) | |
extracted_content = " ".join(text_parts).strip() | |
if extracted_content: | |
has_text = True | |
message["content"] = extracted_content | |
if images: | |
message["images"] = images | |
cleaned_messages.append(message) | |
print("Extracted:", extracted_content) | |
else: | |
if images: | |
has_image = True | |
message["content"] = "" | |
message["images"] = images | |
cleaned_messages.append(message) | |
print("Extracted image only.") | |
else: | |
print("Deleted message with empty content.") | |
elif isinstance(content, str): | |
content_str = content.strip() | |
if content_str: | |
has_text = True | |
message["content"] = content_str | |
cleaned_messages.append(message) | |
print("Retained content:", content_str) | |
else: | |
print("Deleted message with empty content.") | |
else: | |
print("Deleted non-expected type of content message.") | |
if not cleaned_messages: | |
raise HTTPException(status_code=400, detail="所有消息的内容均为空。") | |
# 验证模型 | |
if model not in MODELS: | |
model = "gpt-4o" | |
# 构建新的请求JSON | |
new_request_json = { | |
"function_image_gen": False, | |
"function_web_search": True, | |
"max_tokens": max_tokens, | |
"model": model, | |
"source": "chat/free", | |
"temperature": temperature, | |
"top_p": top_p, | |
"messages": cleaned_messages, | |
} | |
modified_request_body = json.dumps(new_request_json, ensure_ascii=False) | |
print("Modified Request JSON:", modified_request_body) | |
# 获取Bearer Token | |
tmp_token = BearerTokenGenerator.get_bearer(modified_request_body) | |
if not tmp_token: | |
raise HTTPException(status_code=500, detail="无法生成 Bearer Token") | |
bearer_token, formatted_date = tmp_token | |
headers = { | |
"Date": formatted_date, | |
"Client-time-zone": "-05:00", | |
"Authorization": bearer_token, | |
"User-Agent": "ChatOn_Android/1.53.502", | |
"Accept-Language": "en-US", | |
"X-Cl-Options": "hb", | |
"Content-Type": "application/json; charset=UTF-8", | |
} | |
if is_stream: | |
# 流式响应处理 | |
async def event_generator(): | |
async with httpx.AsyncClient(timeout=None) as client_stream: | |
try: | |
async with client_stream.stream("POST", EXTERNAL_API_URL, headers=headers, content=modified_request_body) as streamed_response: | |
async for line in streamed_response.aiter_lines(): | |
if line.startswith("data: "): | |
data = line[6:].strip() | |
if data == "[DONE]": | |
# 通知客户端流结束 | |
yield "data: [DONE]\n\n" | |
break | |
try: | |
sse_json = json.loads(data) | |
if "choices" in sse_json: | |
for choice in sse_json["choices"]: | |
delta = choice.get("delta", {}) | |
content = delta.get("content") | |
if content: | |
new_sse_json = { | |
"choices": [ | |
{ | |
"index": choice.get("index", 0), | |
"delta": {"content": content}, | |
} | |
], | |
"created": sse_json.get( | |
"created", int(datetime.now(timezone.utc).timestamp()) | |
), | |
"id": sse_json.get( | |
"id", str(uuid.uuid4()) | |
), | |
"model": sse_json.get("model", "gpt-4o"), | |
"system_fingerprint": f"fp_{uuid.uuid4().hex[:12]}", | |
} | |
new_sse_line = f"data: {json.dumps(new_sse_json, ensure_ascii=False)}\n\n" | |
yield new_sse_line | |
except json.JSONDecodeError: | |
print("JSON解析错误") | |
continue | |
except httpx.RequestError as exc: | |
print(f"外部API请求失败: {exc}") | |
yield f"data: {{\"error\": \"外部API请求失败: {str(exc)}\"}}\n\n" | |
return StreamingResponse( | |
event_generator(), | |
media_type="text/event-stream", | |
headers={ | |
"Cache-Control": "no-cache", | |
"Connection": "keep-alive", | |
# CORS头已通过中间件处理,无需在这里重复添加 | |
}, | |
) | |
else: | |
# 非流式响应处理 | |
async with httpx.AsyncClient(timeout=None) as client: | |
try: | |
response = await client.post( | |
EXTERNAL_API_URL, | |
headers=headers, | |
content=modified_request_body, | |
timeout=None | |
) | |
if response.status_code != 200: | |
raise HTTPException( | |
status_code=response.status_code, | |
detail=f"API 错误: {response.status_code}", | |
) | |
sse_lines = response.text.splitlines() | |
content_builder = "" | |
images_urls = [] | |
for line in sse_lines: | |
if line.startswith("data: "): | |
data = line[6:].strip() | |
if data == "[DONE]": | |
break | |
try: | |
sse_json = json.loads(data) | |
if "choices" in sse_json: | |
for choice in sse_json["choices"]: | |
if "delta" in choice: | |
delta = choice["delta"] | |
if "content" in delta: | |
content_builder += delta["content"] | |
except json.JSONDecodeError: | |
print("JSON解析错误") | |
continue | |
openai_response = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion", | |
"created": int(datetime.now(timezone.utc).timestamp()), | |
"model": model, | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": content_builder, | |
}, | |
"finish_reason": "stop", | |
} | |
], | |
} | |
# 处理图片(如果有) | |
if has_image: | |
images = [] | |
for message in cleaned_messages: | |
if "images" in message: | |
for img in message["images"]: | |
images.append({"data": img["data"]}) | |
openai_response["choices"][0]["message"]["images"] = images | |
return JSONResponse(content=openai_response, status_code=200) | |
except httpx.RequestError as exc: | |
raise HTTPException(status_code=500, detail=f"请求失败: {str(exc)}") | |
except Exception as exc: | |
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(exc)}") | |
# 图像生成处理 | |
async def images_generations(request: Request): | |
""" | |
处理图像生成请求 | |
""" | |
try: | |
request_body = await request.json() | |
except json.JSONDecodeError: | |
return send_error_response("Invalid JSON", status_code=400) | |
print("Received Image Generations JSON:", json.dumps(request_body, ensure_ascii=False)) | |
# 验证必需的字段 | |
if "prompt" not in request_body: | |
return send_error_response("缺少必需的字段: prompt", status_code=400) | |
user_prompt = request_body.get("prompt", "").strip() | |
response_format = request_body.get("response_format", "b64_json").strip() | |
if not user_prompt: | |
return send_error_response("Prompt 不能为空。", status_code=400) | |
print(f"Prompt: {user_prompt}") | |
# 构建新的 TextToImage JSON 请求体 | |
text_to_image_json = { | |
"function_image_gen": True, | |
"function_web_search": True, | |
"image_aspect_ratio": "1:1", | |
"image_style": "photographic", # 暂时固定 image_style | |
"max_tokens": 8000, | |
"messages": [ | |
{ | |
"content": "You are a helpful artist, please based on imagination draw a picture.", | |
"role": "system" | |
}, | |
{ | |
"content": "Draw: " + user_prompt, | |
"role": "user" | |
} | |
], | |
"model": "gpt-4o", # 固定 model,只能gpt-4o或gpt-4o-mini | |
"source": "chat/pro_image" # 固定 source | |
} | |
modified_request_body = json.dumps(text_to_image_json, ensure_ascii=False) | |
print("Modified Request JSON:", modified_request_body) | |
# 获取Bearer Token | |
tmp_token = BearerTokenGenerator.get_bearer(modified_request_body, path="/chats/stream") | |
if not tmp_token: | |
return send_error_response("无法生成 Bearer Token", status_code=500) | |
bearer_token, formatted_date = tmp_token | |
headers = { | |
"Date": formatted_date, | |
"Client-time-zone": "-05:00", | |
"Authorization": bearer_token, | |
"User-Agent": "ChatOn_Android/1.53.502", | |
"Accept-Language": "en-US", | |
"X-Cl-Options": "hb", | |
"Content-Type": "application/json; charset=UTF-8", | |
} | |
async with httpx.AsyncClient(timeout=None) as client: | |
try: | |
response = await client.post( | |
EXTERNAL_API_URL, headers=headers, content=modified_request_body, timeout=None | |
) | |
if response.status_code != 200: | |
return send_error_response(f"API 错误: {response.status_code}", status_code=500) | |
# 初始化用于拼接 URL 的字符串 | |
url_builder = "" | |
# 读取 SSE 流并拼接 URL | |
async for line in response.aiter_lines(): | |
if line.startswith("data: "): | |
data = line[6:].strip() | |
if data == "[DONE]": | |
break | |
try: | |
sse_json = json.loads(data) | |
if "choices" in sse_json: | |
for choice in sse_json["choices"]: | |
delta = choice.get("delta", {}) | |
content = delta.get("content") | |
if content: | |
url_builder += content | |
except json.JSONDecodeError: | |
print("JSON解析错误") | |
continue | |
image_markdown = url_builder | |
# Step 1: 检查Markdown文本是否为空 | |
if not image_markdown: | |
print("无法从 SSE 流中构建图像 Markdown。") | |
return send_error_response("无法从 SSE 流中构建图像 Markdown。", status_code=500) | |
# Step 2, 3, 4, 5: 处理图像 | |
extracted_path = extract_path_from_markdown(image_markdown) | |
if not extracted_path: | |
print("无法从 Markdown 中提取路径。") | |
return send_error_response("无法从 Markdown 中提取路径。", status_code=500) | |
print(f"提取的路径: {extracted_path}") | |
# Step 5: 拼接最终的存储URL | |
storage_url = f"https://api.chaton.ai/storage/{extracted_path}" | |
print(f"存储URL: {storage_url}") | |
# 获取最终下载URL | |
final_download_url = await fetch_get_url_from_storage(storage_url) | |
if not final_download_url: | |
return send_error_response("无法从 storage URL 获取最终下载链接。", status_code=500) | |
print(f"Final Download URL: {final_download_url}") | |
# 下载图像 | |
image_bytes = await download_image(final_download_url) | |
if not image_bytes: | |
return send_error_response("无法从 URL 下载图像。", status_code=500) | |
# 转换为 Base64 | |
image_base64 = base64.b64encode(image_bytes).decode('utf-8') | |
# 将图片保存到images目录并构建可访问的URL | |
filename = save_base64_image(image_base64) | |
base_url = app.state.base_url | |
accessible_url = f"{base_url}/images/{filename}" | |
# 根据 response_format 返回相应的响应 | |
if response_format.lower() == "b64_json": | |
response_json = { | |
"data": [ | |
{ | |
"b64_json": image_base64 | |
} | |
] | |
} | |
return JSONResponse(content=response_json, status_code=200) | |
else: | |
# 构建包含可访问URL的响应 | |
response_json = { | |
"data": [ | |
{ | |
"url": accessible_url | |
} | |
] | |
} | |
return JSONResponse(content=response_json, status_code=200) | |
except httpx.RequestError as exc: | |
print(f"请求失败: {exc}") | |
return send_error_response(f"请求失败: {str(exc)}", status_code=500) | |
except Exception as exc: | |
print(f"内部服务器错误: {exc}") | |
return send_error_response(f"内部服务器错误: {str(exc)}", status_code=500) | |
# 运行服务器 | |
def main(): | |
parser = argparse.ArgumentParser(description="启动ChatOn API服务器") | |
parser.add_argument('--base_url', type=str, default='http://localhost', help='Base URL for accessing images') | |
parser.add_argument('--port', type=int, default=INITIAL_PORT, help='服务器监听端口') | |
args = parser.parse_args() | |
base_url = args.base_url | |
port = args.port | |
# 确保 images 目录存在 | |
if not os.path.exists("images"): | |
os.makedirs("images") | |
# 设置 FastAPI 应用的 state | |
app.state.base_url = base_url | |
print(f"Server started on port {port} with base_url: {base_url}") | |
# 运行FastAPI应用 | |
uvicorn.run(app, host="0.0.0.0", port=port) | |
async def get_available_port(start_port: int = INITIAL_PORT, end_port: int = 65535) -> int: | |
"""查找可用的端口号""" | |
for port in range(start_port, end_port + 1): | |
try: | |
server = await asyncio.start_server(lambda r, w: None, host="0.0.0.0", port=port) | |
server.close() | |
await server.wait_closed() | |
return port | |
except OSError: | |
continue | |
raise RuntimeError(f"No available ports between {start_port} and {end_port}") | |
if __name__ == "__main__": | |
main() |