prompt_plus / app.py
yxmnjxzx's picture
Update app.py
b51fc11 verified
raw
history blame
21.5 kB
import os
import json
import re
import gradio as gr
from groq import Groq
from pydantic import BaseModel, Field
from typing import Optional, Literal
from custom_css import custom_css
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["superstar","star","done","physics","morphosis", "verse", "phor","bolism","math", "math_meta"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = Groq(api_key=api_key)
def refine_prompt(self, prompt_input: PromptInput) -> RefinementOutput:
if prompt_input.meta_prompt_choice == "morphosis":
selected_meta_prompt = original_meta_prompt
elif prompt_input.meta_prompt_choice == "verse":
selected_meta_prompt = new_meta_prompt
elif prompt_input.meta_prompt_choice == "physics":
selected_meta_prompt = metaprompt1
elif prompt_input.meta_prompt_choice == "bolism":
selected_meta_prompt = loic_metaprompt
elif prompt_input.meta_prompt_choice == "done":
selected_meta_prompt = metadone
elif prompt_input.meta_prompt_choice == "star":
selected_meta_prompt = echo_prompt_refiner
elif prompt_input.meta_prompt_choice == "superstar":
selected_meta_prompt = advanced_echo_prompt_refiner
elif prompt_input.meta_prompt_choice == "math":
selected_meta_prompt = math_meta_prompt
elif prompt_input.meta_prompt_choice == "math_meta":
selected_meta_prompt = math_meta
else:
selected_meta_prompt = advanced_meta_prompt
messages = [
{"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
]
response = self.client.chat.completions.create(
model="llama-3.2-90b-text-preview",
messages=messages,
max_tokens=8192,
temperature=0.7
)
response_content = response.choices[0].message.content.strip()
try:
# Extract JSON from between <json> tags
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
# Remove newlines and escape quotes within the JSON string
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
# Wrap the entire string in quotes and parse it
json_output = json.loads(f'"{json_str}"')
# Ensure json_output is a dictionary
if isinstance(json_output, str):
json_output = json.loads(json_output)
# Unescape the parsed JSON
for key, value in json_output.items():
if isinstance(value, str):
json_output[key] = value.replace('\\"', '"')
return RefinementOutput(**json_output, raw_content=response_content)
else:
raise ValueError("No JSON found in the response")
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing JSON: {e}")
print(f"Raw content: {response_content}")
# If JSON parsing fails, attempt to extract the content manually
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
if match:
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
else:
output[key] = "" # Set empty string if content not found
return RefinementOutput(**output, raw_content=response_content)
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{
"role": "system",
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
1. Paragraph Spacing:
- Add TWO blank lines between major sections (##)
- Add ONE blank line between subsections (###)
- Add ONE blank line between paragraphs within sections
- Add ONE blank line before and after lists
- Add ONE blank line before and after code blocks
- Add ONE blank line before and after blockquotes
2. Section Formatting:
# Title
## Major Section
[blank line]
Content paragraph 1
[blank line]
Content paragraph 2
[blank line]
### Subsection
[blank line]
Content
[blank line]
3. List Formatting:
[blank line]
- List item 1
- List item 2
- List item 3
[blank line]
4. JSON Output Structure:
{
"section_name": "
Content paragraph 1
Content paragraph 2
- List item 1
- List item 2
"
}
Transform content while maintaining clear visual separation between elements. Each logical section should be clearly distinguished with appropriate spacing."""
},
{
"role": "user",
"content": prompt
}
]
''' messages = [
{
"role": "system",
"content": """You are a professional markdown formatting expert. Transform any content into well-structured documentation following these precise rules:
1. Document Structure:
- Start with # for main title
- Use ## for major sections
- Use ### for subsections
- Add > blockquote for key summaries or important notes
- Separate major sections with ---
2. Content Types:
Technical:
- Use ```language for code blocks
- Format inline code with `backticks`
- Use $$ $$ for math equations
- Create tables for comparisons or data
- Use bullet points for features/characteristics
Narrative:
- Format dialogue with proper quotations
- Use *italics* for emphasis
- Keep paragraphs focused and concise
Instructional:
- Use numbered lists for steps
- Bold key terms with **emphasis**
- Add examples in code blocks
- Use tables for parameter explanations
3. Visual Organization:
- Maximum 3 levels of headers
- Short paragraphs (3-5 sentences)
- Consistent spacing between sections
- Clear hierarchy in information
- Strategic use of line breaks
4. Special Elements:
- Tables for structured comparisons
- Fenced code blocks with language specification
- Blockquotes for summaries/key points
- Lists only when necessary
- LaTeX for mathematical notation
Transform the content while maintaining clarity, professionalism, and readability. Focus on creating a logical flow that enhances understanding."""
},
{
"role": "user",
"content": prompt
}
]'''
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=8000, # Increased token limit
temperature=0.8
)
output = response.choices[0].message.content.strip()
# Basic post-processing
return output.replace('\n\n', '\n').strip()
except Exception as e:
return f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner,custom_css):
self.prompt_refiner = prompt_refiner
custom_css = custom_css
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type your prompt (or let it empty to see metaprompt)",
# elem_classes="no-background",
#elem_classes="container2",
lines=5
)
meta_prompt_choice = gr.Radio(
["superstar", "star", "done", "physics", "morphosis", "verse", "phor","bolism","math","math_meta"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
# elem_classes=[ "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
# Option 1: Put Examples here (before Meta Prompt explanation)
with gr.Row(elem_classes=["container2"]):
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "superstar"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "math_meta"],
],
inputs=[prompt_text, meta_prompt_choice]
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
# Option 2: Or put Examples here (after the button)
# with gr.Accordion("Examples", open=False):
# gr.Examples(...)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(' ')
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label="Refined Prompt",
interactive=True,
show_label=True, # Must be True for copy button to show
show_copy_button=True, # Adds the copy button
# elem_classes="no-background"
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
# gr.Markdown("## See MetaPrompt Impact")
with gr.Row():
apply_model = gr.Dropdown(models,
value="llama-3.1-70b-versatile",
label="Choose the Model",
container=False, # This removes the container around the dropdown
scale=1, # Controls the width relative to other components
min_width=300 # Sets minimum width in pixels
# elem_classes="no-background"
)
apply_button = gr.Button("Apply MetaPrompt")
# with gr.Column(elem_classes=["container", "results-container"]):
gr.Markdown("### Prompts on choosen model")
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output]
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
try:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
result = self.prompt_refiner.refine_prompt(input_data)
# Ensure all values are strings or None
analysis_evaluation = str(result.initial_prompt_evaluation) if result.initial_prompt_evaluation else ""
refined_prompt = str(result.refined_prompt) if result.refined_prompt else ""
explanation_refinements = str(result.explanation_of_refinements) if result.explanation_of_refinements else ""
# Create a safe JSON-serializable dictionary
full_response = {
"initial_prompt_evaluation": analysis_evaluation,
"refined_prompt": refined_prompt,
"explanation_of_refinements": explanation_refinements,
"raw_content": str(result.raw_content) if result.raw_content else ""
}
return (
analysis_evaluation,
refined_prompt,
explanation_refinements,
full_response
)
except Exception as e:
# Return safe default values in case of any error
error_response = {
"error": str(e),
"initial_prompt_evaluation": "",
"refined_prompt": "",
"explanation_of_refinements": "",
"raw_content": ""
}
return "", "", "", error_response
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
return original_output, refined_output
def launch(self, share=False):
self.interface.launch(share=share)
metaprompt_explanations = {
"star": "Use ECHO when you need a comprehensive, multi-stage approach for complex prompts. It's ideal for tasks requiring in-depth analysis, exploration of multiple alternatives, and synthesis of ideas. Choose this over others when you have time for a thorough refinement process and need to consider various aspects of the prompt.",
"superstar": "Use advanced ECHO when you need a comprehensive, multi-stage approach for complex prompts. It's ideal for tasks requiring in-depth analysis, exploration of multiple alternatives, and synthesis of ideas. Choose this over others when you have time for a thorough refinement process and need to consider various aspects of the prompt.",
"done": "Opt for this when you want a structured approach with emphasis on role-playing and advanced techniques. It's particularly useful for tasks that benefit from diverse perspectives and complex reasoning. Prefer this over 'physics' when you need a more detailed, step-by-step refinement process.",
"physics": "Select this when you need a balance between structure and advanced techniques, with a focus on role-playing. It's similar to 'done' but may be more suitable for scientific or technical prompts. Choose this over 'done' for a slightly less complex approach.",
"morphosis": "Use this simplified approach for straightforward prompts or when time is limited. It focuses on essential improvements without complex techniques. Prefer this over other methods when you need quick, clear refinements without extensive analysis.",
"verse": "Choose this method when you need to analyze and improve a prompt's strengths and weaknesses, with a focus on information flow. It's particularly useful for enhancing the logical structure of prompts. Use this over 'morphosis' when you need more depth but less complexity than 'star'.",
"phor": "Employ this advanced approach when you need to combine multiple prompt engineering techniques. It's ideal for complex tasks requiring both clarity and sophisticated prompting methods. Select this over 'star' when you want a more flexible, technique-focused approach.",
"bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial.",
"math": "Apply advanced mathematical and logical reasoning techniques to refine the given prompt, ensuring clarity, specificity, and effectiveness. It's best for prompts that deal with math."
}
models = [
"llama-3.1-70b-versatile",
"llama3-groq-70b-8192-tool-use-preview",
"llama-3.2-90b-text-preview",
"llama-3.2-90b-vision-preview",
"llama3-groq-70b-8192-tool-use-preview",
"mixtral-8x7b-32768"
]
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
# Main code to run the application
if __name__ == '__main__':
api_key = os.getenv('GROQ_API_KEY')
if not api_key:
raise ValueError("GROQ_API_KEY not found in environment variables")
metadone=os.getenv('metadone')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
advanced_echo_prompt_refiner = os.getenv('advanced_echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')
loic_metaprompt = os.getenv('loic_metaprompt')
openai_metaprompt=os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')
new_meta_prompt = os.getenv('new_meta_prompt')
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
math_meta_prompt = os.getenv('math_meta_prompt')
math_meta = os.getenv('math_meta')
prompt_refiner = PromptRefiner(api_key)
gradio_interface = GradioInterface(prompt_refiner,custom_css)
gradio_interface.launch(share=True)