File size: 4,222 Bytes
889e704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0eb96e
 
 
 
 
 
889e704
 
 
 
 
b0eb96e
 
889e704
 
 
 
 
 
 
b0eb96e
 
889e704
b0eb96e
889e704
b0eb96e
 
889e704
b0eb96e
889e704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7fd41
 
889e704
 
b0eb96e
889e704
b0eb96e
 
889e704
 
 
 
 
c7a0416
 
999d570
 
 
 
 
 
 
6496905
 
889e704
 
 
 
e09d677
 
889e704
6496905
889e704
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@inproceedings{deng2021compression,
  title={Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation},
  author={Deng, Mingkai and Tan, Bowen and Liu, Zhengzhong and Xing, Eric and Hu, Zhiting},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  pages={7580--7605},
  year={2021}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This repo contains code of an automatic evaluation metric described in the paper
Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: List of texts (Hypothesis) to score. The list now only supports one piece of text
    references: List of texts (Premise) to score. The list now only supports one piece of text
Returns:
    ctc_score: The CTC score
Examples:
    >>> ctc_score = evaluate.load("yzha/ctc_eval")
    >>> results = ctc_score.compute(references=['hello world'], predictions='hi world')
    >>> print(results)
    {'ctc_score': 0.5211202502250671}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CTC_Eval(evaluate.EvaluationModule):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.EvaluationModuleInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('large_string'),
                'references': datasets.Value('large_string'),
            }),
            # Homepage of the module for documentation
            homepage="https://github.com/tanyuqian/ctc-gen-eval",
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/tanyuqian/ctc-gen-eval"],
            reference_urls=["https://github.com/tanyuqian/ctc-gen-eval"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        import nltk
        nltk.download('stopwords')
        import subprocess
        import sys

        def install(package):
            subprocess.check_call([sys.executable, "-m", "pip", "install", package])
        
        install('ctc-score')
        from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer
        self.scorer = SummarizationScorer(align='D-cnndm')

    def _compute(self, predictions, references):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        assert len(predictions) == len(references)
        ctc_score = self.scorer.score(doc=references[0], refs=[], hypo=predictions[0], aspect='consistency')
        return {
            "ctc_score": ctc_score,
        }