File size: 4,995 Bytes
889e704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0bdcf
889e704
 
 
 
 
 
b0eb96e
 
 
 
 
 
889e704
 
 
 
 
b0eb96e
 
889e704
 
 
 
 
 
 
b0eb96e
 
889e704
b0eb96e
889e704
b0eb96e
9af909b
889e704
b0eb96e
889e704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7fd41
 
889e704
 
b0eb96e
889e704
b0eb96e
 
889e704
 
 
 
 
c7a0416
 
999d570
 
 
 
 
 
2c0bdcf
 
 
 
 
 
 
 
 
889e704
2c0bdcf
db65786
e251d64
2c0bdcf
 
 
 
8371ccc
 
2c0bdcf
9af909b
889e704
 
 
e09d677
950dce9
7ac6c22
 
18c3b95
889e704
2c0bdcf
889e704
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

from typing import final
import evaluate
import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@inproceedings{deng2021compression,
  title={Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation},
  author={Deng, Mingkai and Tan, Bowen and Liu, Zhengzhong and Xing, Eric and Hu, Zhiting},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  pages={7580--7605},
  year={2021}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This repo contains code of an automatic evaluation metric described in the paper
Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: List of texts (Hypothesis) to score. The list now only supports one piece of text
    references: List of texts (Premise) to score. The list now only supports one piece of text
Returns:
    ctc_score: The CTC score
Examples:
    >>> ctc_score = evaluate.load("yzha/ctc_eval")
    >>> results = ctc_score.compute(references=['hello world'], predictions=['hi world'])
    >>> print(results)
    {'ctc_score': 0.5211202502250671}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CTC_Eval(evaluate.EvaluationModule):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.EvaluationModuleInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('large_string'),
                'references': datasets.Value('large_string'),
            }),
            # Homepage of the module for documentation
            homepage="https://github.com/tanyuqian/ctc-gen-eval",
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/tanyuqian/ctc-gen-eval"],
            reference_urls=["https://github.com/tanyuqian/ctc-gen-eval"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        import nltk
        nltk.download('stopwords')
        import subprocess
        import sys

        def install(package):
            subprocess.check_call([sys.executable, "-m", "pip", "install", package])
        
        
        try:
            from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer
        except:
            print('ctc package is not installed. installing...')
            install('ctc-score')

        if self.config_name == 'default':
            self.config_name = 'D-cnndm,consistency'

        model_name, self.aspect = self.config_name.split(',')
        if self.aspect in ['consistency', 'relevance']:
            self.scorer = SummarizationScorer(align=model_name, device='cpu')
        elif self.aspect in ['preservation']:
            self.scorer = StyleTransferScorer(align=model_name)
        elif self.aspect in ['engagingness', 'groundedness']:
            self.scorer = DialogScorer(align=model_name)

        print(self.compute(references=['hello world'], predictions=['hi world']))
        

    def _compute(self, predictions, references):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        assert len(predictions) == len(references)
        print('computing...')
        print(predictions)
        print(references)
        ctc_score = self.scorer.score(doc=references[0], refs=[], hypo=predictions[0], aspect=self.aspect)
        return {
            "ctc_score": ctc_score
        }