ctc_eval / ctc_eval.py
yzha's picture
update
2c2f56c
raw
history blame
4.3 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@inproceedings{deng2021compression,
title={Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation},
author={Deng, Mingkai and Tan, Bowen and Liu, Zhengzhong and Xing, Eric and Hu, Zhiting},
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
pages={7580--7605},
year={2021}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This repo contains code of an automatic evaluation metric described in the paper
Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: List of texts (Hypothesis) to score. The list now only supports one piece of text
references: List of texts (Premise) to score. The list now only supports one piece of text
Returns:
ctc_score: The CTC score
Examples:
>>> ctc_score = evaluate.load("yzha/ctc_eval")
>>> results = ctc_score.compute(references=['hello world'], predictions='hi world')
>>> print(results)
{'ctc_score': 0.5211202502250671}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CTC_Eval(evaluate.EvaluationModule):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('large_string'),
'references': datasets.Value('large_string'),
}),
# Homepage of the module for documentation
homepage="https://github.com/tanyuqian/ctc-gen-eval",
# Additional links to the codebase or references
codebase_urls=["https://github.com/tanyuqian/ctc-gen-eval"],
reference_urls=["https://github.com/tanyuqian/ctc-gen-eval"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
import nltk
nltk.download('stopwords')
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install('ctc-score')
from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer
self.scorer = SummarizationScorer(align='D-cnndm')
def _compute(self, predictions, references):
"""Returns the scores"""
# TODO: Compute the different scores of the module
assert len(predictions) == len(references)
print('computing...')
print(predictions)
print(references)
ctc_score = self.scorer.score(doc=references[0], refs=[], hypo=predictions[0], aspect='consistency')
return {
"ctc_score": ctc_score
}