# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" from typing import final import evaluate import datasets # TODO: Add BibTeX citation _CITATION = """\ @inproceedings{deng2021compression, title={Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation}, author={Deng, Mingkai and Tan, Bowen and Liu, Zhengzhong and Xing, Eric and Hu, Zhiting}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={7580--7605}, year={2021} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This repo contains code of an automatic evaluation metric described in the paper Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: List of texts (Hypothesis) to score. The list now only supports one piece of text references: List of texts (Premise) to score. The list now only supports one piece of text Returns: ctc_score: The CTC score Examples: >>> ctc_score = evaluate.load("yzha/ctc_eval") >>> results = ctc_score.compute(references=['hello world'], predictions=['hi world']) >>> print(results) {'ctc_score': 0.5211202502250671} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CTC_Eval(evaluate.EvaluationModule): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.EvaluationModuleInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value('large_string'), 'references': datasets.Value('large_string'), }), # Homepage of the module for documentation homepage="https://github.com/tanyuqian/ctc-gen-eval", # Additional links to the codebase or references codebase_urls=["https://github.com/tanyuqian/ctc-gen-eval"], reference_urls=["https://github.com/tanyuqian/ctc-gen-eval"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed import nltk nltk.download('stopwords') import subprocess import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) try: from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer except: print('ctc package is not installed. installing...') install('ctc-score') if self.config_name == 'default': self.config_name = 'D-cnndm,consistency' model_name, self.aspect = self.config_name.split(',') if self.aspect in ['consistency', 'relevance']: self.scorer = SummarizationScorer(align=model_name, device='cpu') elif self.aspect in ['preservation']: self.scorer = StyleTransferScorer(align=model_name) elif self.aspect in ['engagingness', 'groundedness']: self.scorer = DialogScorer(align=model_name) print(self.compute(references=['hello world'], predictions=['hi world'])) def _compute(self, predictions, references): """Returns the scores""" # TODO: Compute the different scores of the module assert len(predictions) == len(references) print('computing...') print(predictions) print(references) ctc_score = self.scorer.score(doc=references[0], refs=[], hypo=predictions[0], aspect=self.aspect) return { "ctc_score": ctc_score }