import gradio as gr import requests import sseclient import os API_URL = "http://localhost:8000/v1/chat/completions" def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, beta, ): # Build message history messages = [{"role": "system", "content": system_message}] for user, assistant in history: if user: messages.append({"role": "user", "content": user}) if assistant: messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) # Prepare request payload payload = { "model": "Qwen/Qwen3-4B", # Update to your actual model if needed "messages": messages, "temperature": temperature, "top_p": top_p, "max_tokens": max_tokens, "stream": True, } # Optional: send beta as a custom OpenAI field headers = { "Content-Type": "application/json", "X-MIXINPUTS-BETA": str(beta), # or modify your vLLM code to read this } # Stream response using SSE (Server-Sent Events) try: response = requests.post(API_URL, json=payload, stream=True, headers=headers) response.raise_for_status() client = sseclient.SSEClient(response) full_text = "" for event in client.events(): if event.data == "[DONE]": break delta = event.json()["choices"][0]["delta"].get("content", "") full_text += delta yield full_text except Exception as e: yield f"[ERROR] {e}" # UI layout using ChatInterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant using Mixture of Inputs.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Slider(minimum=0.0, maximum=10.0, value=1.0, step=0.1, label="MoI Beta"), ], title="🧪 Mixture of Inputs (MoI) Demo", description="Streaming local vLLM demo with dynamic MoI beta adjustment.", ) if __name__ == "__main__": demo.launch()