__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] import os import gradio as gr import pandas as pd from constants import * global data_component, filter_component def get_baseline_df(): df = pd.read_csv(CSV_DIR) df['Average'] = ((df['Streaming_OS'] + df['Dialogue_OS']) / 2).round(2) df = df.sort_values(by="Average", ascending=False) present_columns = ['Model'] + checkbox_group.value df = df[present_columns] return df def get_all_df(): df = pd.read_csv(CSV_DIR) df['Average'] = ((df['Streaming_OS'] + df['Dialogue_OS']) / 2).round(2) df = df.sort_values(by="Average", ascending=False) return df def on_filter_model_size_method_change(selected_columns): updated_data = get_all_df() # columns: selected_columns = [item for item in TASK_INFO if item in selected_columns] present_columns = ['Model'] + selected_columns updated_data = updated_data[present_columns] updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False) updated_headers = present_columns update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] filter_component = gr.components.Dataframe( value=updated_data, headers=updated_headers, type="pandas", datatype=update_datatype, interactive=False, visible=True, ) return filter_component def search_model(query): df = get_all_df() filtered_df = df[df['Model'].str.contains(query, case=False)] return filtered_df block = gr.Blocks() with block: gr.Markdown( LEADERBORAD_INTRODUCTION ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("📊 SVBench", elem_id="svbench-tab-table", id=1): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=10, ) gr.Markdown( TABLE_INTRODUCTION ) # selection for column part: checkbox_group = gr.CheckboxGroup( choices=TASK_INFO, value=AVG_INFO, label="Evaluation Dimension", interactive=True, ) search_box = gr.Textbox( label="Search Model", placeholder="Enter model name", interactive=True, ) data_component = gr.components.Dataframe( value=get_baseline_df, headers=['Model', 'Type', 'Size'] + AVG_INFO, type="pandas", datatype=DATA_TITILE_TYPE, interactive=False, visible=True, ) checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) search_box.change(fn=search_model, inputs=[search_box], outputs=data_component) # table 2 with gr.TabItem("📝 About", elem_id="svbench-tab-table", id=2): gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") # table 3 with gr.TabItem("🚀 Submit here! ", elem_id="-tab-table", id=3): gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") def refresh_data(): value1 = get_baseline_df() return value1 with gr.Row(): data_run = gr.Button("Refresh") with gr.Row(): result_download = gr.Button("Download Leaderboard") file_download = gr.File(label="download the csv of leaderboard.", visible=False) data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) result_download.click(lambda: (CSV_DIR, gr.update(visible=True)), inputs=None, outputs=[file_download, file_download]) block.launch()