LETR / app.py
z-uo's picture
add description
2eef120
raw
history blame
2.23 kB
from PIL import Image, ImageDraw
import torch
from torchvision import transforms
import torch.nn.functional as F
import gradio as gr
# import sys
# sys.path.insert(0, './')
from test import create_letr, draw_fig
from models.preprocessing import *
from models.misc import nested_tensor_from_tensor_list
model = create_letr('resnet50/checkpoint0024.pth')
model101 = create_letr('resnet101/checkpoint0024.pth')
# PREPARE PREPROCESSING
# transform_test = transforms.Compose([
# transforms.Resize((test_size)),
# transforms.ToTensor(),
# transforms.Normalize([0.538, 0.494, 0.453], [0.257, 0.263, 0.273]),
# ])
normalize = Compose([
ToTensor(),
Normalize([0.538, 0.494, 0.453], [0.257, 0.263, 0.273]),
Resize([256]),
])
normalize_512 = Compose([
ToTensor(),
Normalize([0.538, 0.494, 0.453], [0.257, 0.263, 0.273]),
Resize([512]),
])
normalize_1100 = Compose([
ToTensor(),
Normalize([0.538, 0.494, 0.453], [0.257, 0.263, 0.273]),
Resize([1100]),
])
def predict(inp, size, model_name):
image = Image.fromarray(inp.astype('uint8'), 'RGB')
h, w = image.height, image.width
orig_size = torch.as_tensor([int(h), int(w)])
if size == '1100':
img = normalize_1100(image)
elif size == '512':
img = normalize_512(image)
else:
img = normalize(image)
inputs = nested_tensor_from_tensor_list([img])
with torch.no_grad():
if model_name == 'resnet101':
outputs = model101(inputs)[0]
else:
outputs = model(inputs)[0]
draw_fig(image, outputs, orig_size)
return image
inputs = [
gr.inputs.Image(),
gr.inputs.Radio(["256", "512", "1100"]),
gr.inputs.Radio(["resnet50", "resnet101"]),
]
outputs = gr.outputs.Image()
gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
examples=[
["demo.png", '256', "resnet50"],
["tappeto-per-calibrazione.jpg", '256', "resnet50"]
],
title="LETR: Line Segment Detection Using Transformers without Edges",
description="It is an end-to-end line segment detection algorithm using Transformers [published on CVPR 2021](https://github.com/mlpc-ucsd/LETR)."
).launch()