Spaces:
Running
Running
""" | |
This file provides definition of multi head attention | |
borrowed from https://pytorch.org/docs/stable/_modules/torch/nn/modules/activation.html#MultiheadAttention | |
""" | |
import warnings | |
from typing import Tuple, Optional | |
import torch | |
from torch import Tensor | |
from torch.nn.modules.linear import _LinearWithBias | |
from torch.nn.init import xavier_uniform_ | |
from torch.nn.init import constant_ | |
from torch.nn.init import xavier_normal_ | |
from torch.nn.parameter import Parameter | |
from torch.nn.modules.module import Module | |
from torch.nn import functional as F | |
from torch.overrides import has_torch_function, handle_torch_function | |
from torch import _VF | |
# Activation functions | |
def dropout(input, p=0.5, training=True, inplace=False): | |
# type: (Tensor, float, bool, bool) -> Tensor | |
r""" | |
During training, randomly zeroes some of the elements of the input | |
tensor with probability :attr:`p` using samples from a Bernoulli | |
distribution. | |
See :class:`~torch.nn.Dropout` for details. | |
Args: | |
p: probability of an element to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if not torch.jit.is_scripting(): | |
if type(input) is not Tensor and has_torch_function((input,)): | |
return handle_torch_function( | |
dropout, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0. or p > 1.: | |
raise ValueError("dropout probability has to be between 0 and 1, " | |
"but got {}".format(p)) | |
return (_VF.dropout_(input, p, training) | |
if inplace | |
else _VF.dropout(input, p, training)) | |
def _get_softmax_dim(name, ndim, stacklevel): | |
# type: (str, int, int) -> int | |
warnings.warn("Implicit dimension choice for {} has been deprecated. " | |
"Change the call to include dim=X as an argument.".format(name), stacklevel=stacklevel) | |
if ndim == 0 or ndim == 1 or ndim == 3: | |
ret = 0 | |
else: | |
ret = 1 | |
return ret | |
def softmax(input, dim=None, _stacklevel=3, dtype=None): | |
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor | |
r"""Applies a softmax function. | |
Softmax is defined as: | |
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` | |
It is applied to all slices along dim, and will re-scale them so that the elements | |
lie in the range `[0, 1]` and sum to 1. | |
See :class:`~torch.nn.Softmax` for more details. | |
Args: | |
input (Tensor): input | |
dim (int): A dimension along which softmax will be computed. | |
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. | |
If specified, the input tensor is casted to :attr:`dtype` before the operation | |
is performed. This is useful for preventing data type overflows. Default: None. | |
.. note:: | |
This function doesn't work directly with NLLLoss, | |
which expects the Log to be computed between the Softmax and itself. | |
Use log_softmax instead (it's faster and has better numerical properties). | |
""" | |
if not torch.jit.is_scripting(): | |
if type(input) is not Tensor and has_torch_function((input,)): | |
return handle_torch_function( | |
softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) | |
if dim is None: | |
dim = _get_softmax_dim('softmax', input.dim(), _stacklevel) | |
if dtype is None: | |
ret = input.softmax(dim) | |
else: | |
ret = input.softmax(dim, dtype=dtype) | |
return ret | |
def linear(input, weight, bias=None): | |
# type: (Tensor, Tensor, Optional[Tensor]) -> Tensor | |
r""" | |
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`. | |
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
Shape: | |
- Input: :math:`(N, *, in\_features)` N is the batch size, `*` means any number of | |
additional dimensions | |
- Weight: :math:`(out\_features, in\_features)` | |
- Bias: :math:`(out\_features)` | |
- Output: :math:`(N, *, out\_features)` | |
""" | |
tens_ops = (input, weight) | |
if not torch.jit.is_scripting(): | |
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): | |
return handle_torch_function(linear, tens_ops, input, weight, bias=bias) | |
if input.dim() == 2 and bias is not None: | |
# fused op is marginally faster | |
ret = torch.addmm(bias, input, weight.t()) | |
else: | |
output = input.matmul(weight.t()) | |
if bias is not None: | |
output += bias | |
ret = output | |
return ret | |
def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int,num_heads: int, | |
in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, | |
dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, | |
k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]: | |
r""" | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
embed_dim_to_check: total dimension of the model. | |
num_heads: parallel attention heads. | |
in_proj_weight, in_proj_bias: input projection weight and bias. | |
bias_k, bias_v: bias of the key and value sequences to be added at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
dropout_p: probability of an element to be zeroed. | |
out_proj_weight, out_proj_bias: the output projection weight and bias. | |
training: apply dropout if is ``True``. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. This is an binary mask. When the value is True, | |
the corresponding value on the attention layer will be filled with -inf. | |
need_weights: output attn_output_weights. | |
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
use_separate_proj_weight: the function accept the proj. weights for query, key, | |
and value in different forms. If false, in_proj_weight will be used, which is | |
a combination of q_proj_weight, k_proj_weight, v_proj_weight. | |
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. | |
static_k, static_v: static key and value used for attention operators. | |
Shape: | |
Inputs: | |
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions | |
will be unchanged. If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked | |
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
Outputs: | |
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
E is the embedding dimension. | |
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
L is the target sequence length, S is the source sequence length. | |
""" | |
if not torch.jit.is_scripting(): | |
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, | |
out_proj_weight, out_proj_bias) | |
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): | |
return handle_torch_function( | |
multi_head_attention_forward, tens_ops, query, key, value, | |
embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, | |
bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, | |
out_proj_bias, training=training, key_padding_mask=key_padding_mask, | |
need_weights=need_weights, attn_mask=attn_mask, | |
use_separate_proj_weight=use_separate_proj_weight, | |
q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, | |
v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == embed_dim_to_check | |
# allow MHA to have different sizes for the feature dimension | |
assert key.size(0) == value.size(0) and key.size(1) == value.size(1) | |
head_dim = embed_dim // num_heads | |
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" | |
scaling = float(head_dim) ** -0.5 | |
if not use_separate_proj_weight: | |
if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)): | |
# self-attention | |
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) | |
elif (key is value or torch.equal(key, value)): | |
# encoder-decoder attention | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = linear(query, _w, _b) | |
if key is None: | |
assert value is None | |
k = None | |
v = None | |
else: | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
k, v = linear(key, _w, _b).chunk(2, dim=-1) | |
else: | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = linear(query, _w, _b) | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = embed_dim * 2 | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
k = linear(key, _w, _b) | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim * 2 | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
v = linear(value, _w, _b) | |
else: | |
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) | |
len1, len2 = q_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == query.size(-1) | |
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) | |
len1, len2 = k_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == key.size(-1) | |
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) | |
len1, len2 = v_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == value.size(-1) | |
if in_proj_bias is not None: | |
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) | |
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) | |
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) | |
else: | |
q = linear(query, q_proj_weight_non_opt, in_proj_bias) | |
k = linear(key, k_proj_weight_non_opt, in_proj_bias) | |
v = linear(value, v_proj_weight_non_opt, in_proj_bias) | |
q = q * scaling | |
if attn_mask is not None: | |
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ | |
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ | |
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) | |
if attn_mask.dtype == torch.uint8: | |
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
attn_mask = attn_mask.to(torch.bool) | |
if attn_mask.dim() == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: | |
raise RuntimeError('The size of the 2D attn_mask is not correct.') | |
elif attn_mask.dim() == 3: | |
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: | |
raise RuntimeError('The size of the 3D attn_mask is not correct.') | |
else: | |
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) | |
# attn_mask's dim is 3 now. | |
# convert ByteTensor key_padding_mask to bool | |
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: | |
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
key_padding_mask = key_padding_mask.to(torch.bool) | |
if bias_k is not None and bias_v is not None: | |
if static_k is None and static_v is None: | |
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
else: | |
assert static_k is None, "bias cannot be added to static key." | |
assert static_v is None, "bias cannot be added to static value." | |
else: | |
assert bias_k is None | |
assert bias_v is None | |
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | |
if k is not None: | |
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
if v is not None: | |
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
if static_k is not None: | |
assert static_k.size(0) == bsz * num_heads | |
assert static_k.size(2) == head_dim | |
k = static_k | |
if static_v is not None: | |
assert static_v.size(0) == bsz * num_heads | |
assert static_v.size(2) == head_dim | |
v = static_v | |
src_len = k.size(1) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
if add_zero_attn: | |
src_len += 1 | |
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) | |
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_output_weights.masked_fill_(attn_mask, float('-inf')) | |
else: | |
attn_output_weights += attn_mask | |
if key_padding_mask is not None: | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
attn_output_weights = attn_output_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
float('-inf'), | |
) | |
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) | |
attn_output_weights = softmax( | |
attn_output_weights, dim=-1) | |
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) | |
attn_output = torch.bmm(attn_output_weights, v) | |
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] | |
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn_output = linear(attn_output, out_proj_weight, out_proj_bias) | |
if need_weights: | |
# average attention weights over heads | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
return attn_output, attn_output_weights.sum(dim=1) / num_heads | |
else: | |
return attn_output, None | |
class MultiheadAttention(Module): | |
r"""Allows the model to jointly attend to information | |
from different representation subspaces. | |
See reference: Attention Is All You Need | |
.. math:: | |
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O | |
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) | |
Args: | |
embed_dim: total dimension of the model. | |
num_heads: parallel attention heads. | |
dropout: a Dropout layer on attn_output_weights. Default: 0.0. | |
bias: add bias as module parameter. Default: True. | |
add_bias_kv: add bias to the key and value sequences at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
kdim: total number of features in key. Default: None. | |
vdim: total number of features in value. Default: None. | |
Note: if kdim and vdim are None, they will be set to embed_dim such that | |
query, key, and value have the same number of features. | |
Examples:: | |
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) | |
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) | |
""" | |
bias_k: Optional[torch.Tensor] | |
bias_v: Optional[torch.Tensor] | |
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): | |
super(MultiheadAttention, self).__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
if self._qkv_same_embed_dim is False: | |
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) | |
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) | |
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) | |
self.register_parameter('in_proj_weight', None) | |
else: | |
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) | |
self.register_parameter('q_proj_weight', None) | |
self.register_parameter('k_proj_weight', None) | |
self.register_parameter('v_proj_weight', None) | |
if bias: | |
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) | |
else: | |
self.register_parameter('in_proj_bias', None) | |
self.out_proj = _LinearWithBias(embed_dim, embed_dim) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) | |
self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self._reset_parameters() | |
def _reset_parameters(self): | |
if self._qkv_same_embed_dim: | |
xavier_uniform_(self.in_proj_weight) | |
else: | |
xavier_uniform_(self.q_proj_weight) | |
xavier_uniform_(self.k_proj_weight) | |
xavier_uniform_(self.v_proj_weight) | |
if self.in_proj_bias is not None: | |
constant_(self.in_proj_bias, 0.) | |
constant_(self.out_proj.bias, 0.) | |
if self.bias_k is not None: | |
xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
xavier_normal_(self.bias_v) | |
def __setstate__(self, state): | |
# Support loading old MultiheadAttention checkpoints generated by v1.1.0 | |
if '_qkv_same_embed_dim' not in state: | |
state['_qkv_same_embed_dim'] = True | |
super(MultiheadAttention, self).__setstate__(state) | |
def forward(self, query, key, value, key_padding_mask=None, | |
need_weights=True, attn_mask=None): | |
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] | |
r""" | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. When given a binary mask and a value is True, | |
the corresponding value on the attention layer will be ignored. When given | |
a byte mask and a value is non-zero, the corresponding value on the attention | |
layer will be ignored | |
need_weights: output attn_output_weights. | |
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
Shape: | |
- Inputs: | |
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
If a ByteTensor is provided, the non-zero positions will be ignored while the position | |
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked | |
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
- Outputs: | |
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
E is the embedding dimension. | |
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
L is the target sequence length, S is the source sequence length. | |
""" | |
if not self._qkv_same_embed_dim: | |
return multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, need_weights=need_weights, | |
attn_mask=attn_mask, use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, | |
v_proj_weight=self.v_proj_weight) | |
else: | |
return multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, need_weights=need_weights, | |
attn_mask=attn_mask) | |