|
import matplotlib |
|
matplotlib.use('Agg') |
|
from data_gen.tts.data_gen_utils import get_pitch |
|
from modules.fastspeech.tts_modules import mel2ph_to_dur |
|
import matplotlib.pyplot as plt |
|
from utils import audio |
|
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse |
|
from vocoders.base_vocoder import get_vocoder_cls |
|
import json |
|
from utils.plot import spec_to_figure |
|
from utils.hparams import hparams |
|
import torch |
|
import torch.optim |
|
import torch.nn.functional as F |
|
import torch.utils.data |
|
from modules.GenerSpeech.task.dataset import GenerSpeech_dataset |
|
from modules.GenerSpeech.model.generspeech import GenerSpeech |
|
import torch.distributions |
|
import numpy as np |
|
from utils.tts_utils import select_attn |
|
import utils |
|
import os |
|
from tasks.tts.fs2 import FastSpeech2Task |
|
|
|
class GenerSpeechTask(FastSpeech2Task): |
|
def __init__(self): |
|
super(GenerSpeechTask, self).__init__() |
|
self.dataset_cls = GenerSpeech_dataset |
|
|
|
def build_tts_model(self): |
|
self.model = GenerSpeech(self.phone_encoder) |
|
|
|
def build_model(self): |
|
self.build_tts_model() |
|
if hparams['load_ckpt'] != '': |
|
self.load_ckpt(hparams['load_ckpt'], strict=False) |
|
utils.num_params(self.model) |
|
return self.model |
|
|
|
def run_model(self, model, sample, return_output=False): |
|
txt_tokens = sample['txt_tokens'] |
|
target = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
mel2word = sample['mel2word'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
emo_embed = sample.get('emo_embed') |
|
output = model(txt_tokens, mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, |
|
ref_mels=target, f0=f0, uv=uv, tgt_mels=target, global_steps=self.global_step, infer=False) |
|
losses = {} |
|
losses['postflow'] = output['postflow'] |
|
if self.global_step > hparams['forcing']: |
|
losses['gloss'] = (output['gloss_utter'] + output['gloss_ph'] + output['gloss_word']) / 3 |
|
if self.global_step > hparams['vq_start']: |
|
losses['vq_loss'] = (output['vq_loss_utter'] + output['vq_loss_ph'] + output['vq_loss_word']) / 3 |
|
losses['ppl_utter'] = output['ppl_utter'] |
|
losses['ppl_ph'] = output['ppl_ph'] |
|
losses['ppl_word'] = output['ppl_word'] |
|
self.add_mel_loss(output['mel_out'], target, losses) |
|
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) |
|
if hparams['use_pitch_embed']: |
|
self.add_pitch_loss(output, sample, losses) |
|
output['select_attn'] = select_attn(output['attn_ph']) |
|
|
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
outputs['losses'] = {} |
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) |
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
encdec_attn = model_out['select_attn'] |
|
mel_out = self.model.out2mel(model_out['mel_out']) |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if self.global_step % hparams['valid_infer_interval'] == 0 \ |
|
and batch_idx < hparams['num_valid_plots']: |
|
vmin = hparams['mel_vmin'] |
|
vmax = hparams['mel_vmax'] |
|
self.plot_mel(batch_idx, sample['mels'], mel_out) |
|
self.plot_dur(batch_idx, sample, model_out) |
|
if hparams['use_pitch_embed']: |
|
self.plot_pitch(batch_idx, sample, model_out) |
|
if self.vocoder is None: |
|
self.vocoder = get_vocoder_cls(hparams)() |
|
if self.global_step > 0: |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
emo_embed = sample.get('emo_embed') |
|
ref_mels = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
mel2word = sample['mel2word'] |
|
|
|
model_out = self.model(sample['txt_tokens'], mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, |
|
emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True) |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) |
|
self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step, |
|
hparams['audio_sample_rate']) |
|
self.logger.add_figure(f'ali_{batch_idx}', spec_to_figure(encdec_attn[0]), self.global_step) |
|
self.logger.add_figure( |
|
f'mel_gtdur_{batch_idx}', |
|
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) |
|
|
|
model_out = self.model(sample['txt_tokens'], ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels, |
|
global_steps=self.global_step, infer=True) |
|
self.logger.add_figure( |
|
f'mel_{batch_idx}', |
|
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) |
|
self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate']) |
|
|
|
if self.global_step <= hparams['valid_infer_interval']: |
|
mel_gt = sample['mels'][0].cpu() |
|
wav_gt = self.vocoder.spec2wav(mel_gt) |
|
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050) |
|
return outputs |
|
|
|
|
|
|
|
|
|
def test_step(self, sample, batch_idx): |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
emo_embed = sample.get('emo_embed') |
|
txt_tokens = sample['txt_tokens'] |
|
mel2ph, uv, f0 = None, None, None |
|
ref_mel2word = sample['mel2word'] |
|
ref_mel2ph = sample['mel2ph'] |
|
ref_mels = sample['mels'] |
|
if hparams['use_gt_dur']: |
|
mel2ph = sample['mel2ph'] |
|
if hparams['use_gt_f0']: |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
global_steps = 200000 |
|
run_model = lambda: self.model( |
|
txt_tokens, spk_embed=spk_embed, emo_embed=emo_embed, mel2ph=mel2ph, ref_mel2ph=ref_mel2ph, ref_mel2word=ref_mel2word, |
|
f0=f0, uv=uv, ref_mels=ref_mels, global_steps=global_steps, infer=True) |
|
outputs = run_model() |
|
sample['outputs'] = self.model.out2mel(outputs['mel_out']) |
|
sample['mel2ph_pred'] = outputs['mel2ph'] |
|
if hparams['use_pitch_embed']: |
|
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
if hparams['pitch_type'] == 'ph': |
|
sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph']) |
|
sample['f0_pred'] = outputs.get('f0_denorm') |
|
|
|
return self.after_infer(sample) |
|
|
|
|
|
|
|
def after_infer(self, predictions, sil_start_frame=0): |
|
predictions = utils.unpack_dict_to_list(predictions) |
|
assert len(predictions) == 1, 'Only support batch_size=1 in inference.' |
|
prediction = predictions[0] |
|
prediction = utils.tensors_to_np(prediction) |
|
item_name = prediction.get('item_name') |
|
text = prediction.get('text') |
|
ph_tokens = prediction.get('txt_tokens') |
|
mel_gt = prediction["mels"] |
|
mel2ph_gt = prediction.get("mel2ph") |
|
mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None |
|
mel_pred = prediction["outputs"] |
|
mel2ph_pred = prediction.get("mel2ph_pred") |
|
f0_gt = prediction.get("f0") |
|
f0_pred = prediction.get("f0_pred") |
|
|
|
str_phs = None |
|
if self.phone_encoder is not None and 'txt_tokens' in prediction: |
|
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) |
|
|
|
if 'encdec_attn' in prediction: |
|
encdec_attn = prediction['encdec_attn'] |
|
encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)] |
|
txt_lengths = prediction.get('txt_lengths') |
|
encdec_attn = encdec_attn.T[:, :txt_lengths] |
|
else: |
|
encdec_attn = None |
|
|
|
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) |
|
wav_pred[:sil_start_frame * hparams['hop_size']] = 0 |
|
gen_dir = self.gen_dir |
|
base_fn = f'[{self.results_id:06d}][{item_name}][%s]' |
|
|
|
|
|
base_fn = base_fn.replace(' ', '_') |
|
if not hparams['profile_infer']: |
|
os.makedirs(gen_dir, exist_ok=True) |
|
os.makedirs(f'{gen_dir}/wavs', exist_ok=True) |
|
os.makedirs(f'{gen_dir}/plot', exist_ok=True) |
|
if hparams.get('save_mel_npy', False): |
|
os.makedirs(f'{gen_dir}/npy', exist_ok=True) |
|
if 'encdec_attn' in prediction: |
|
os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True) |
|
self.saving_results_futures.append( |
|
self.saving_result_pool.apply_async(self.save_result, args=[ |
|
wav_pred, mel_pred, base_fn % 'TTS', gen_dir, str_phs, mel2ph_pred, encdec_attn])) |
|
|
|
if mel_gt is not None and hparams['save_gt']: |
|
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) |
|
self.saving_results_futures.append( |
|
self.saving_result_pool.apply_async(self.save_result, args=[ |
|
wav_gt, mel_gt, base_fn % 'Ref', gen_dir, str_phs, mel2ph_gt])) |
|
if hparams['save_f0']: |
|
import matplotlib.pyplot as plt |
|
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) |
|
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) |
|
fig = plt.figure() |
|
plt.plot(f0_pred_, label=r'$\hat{f_0}$') |
|
plt.plot(f0_gt_, label=r'$f_0$') |
|
plt.legend() |
|
plt.tight_layout() |
|
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') |
|
plt.close(fig) |
|
|
|
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") |
|
self.results_id += 1 |
|
return { |
|
'item_name': item_name, |
|
'text': text, |
|
'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()), |
|
'wav_fn_pred': base_fn % 'TTS', |
|
'wav_fn_gt': base_fn % 'Ref', |
|
} |
|
|
|
|
|
|
|
@staticmethod |
|
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): |
|
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], |
|
norm=hparams['out_wav_norm']) |
|
fig = plt.figure(figsize=(14, 10)) |
|
spec_vmin = hparams['mel_vmin'] |
|
spec_vmax = hparams['mel_vmax'] |
|
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) |
|
fig.colorbar(heatmap) |
|
f0, _ = get_pitch(wav_out, mel, hparams) |
|
f0 = f0 / 10 * (f0 > 0) |
|
plt.plot(f0, c='white', linewidth=1, alpha=0.6) |
|
if mel2ph is not None and str_phs is not None: |
|
decoded_txt = str_phs.split(" ") |
|
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() |
|
dur = [0] + list(np.cumsum(dur)) |
|
for i in range(len(dur) - 1): |
|
shift = (i % 20) + 1 |
|
plt.text(dur[i], shift, decoded_txt[i]) |
|
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') |
|
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', |
|
alpha=1, linewidth=1) |
|
plt.tight_layout() |
|
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') |
|
plt.close(fig) |
|
if hparams.get('save_mel_npy', False): |
|
np.save(f'{gen_dir}/npy/{base_fn}', mel) |
|
if alignment is not None: |
|
fig, ax = plt.subplots(figsize=(12, 16)) |
|
im = ax.imshow(alignment, aspect='auto', origin='lower', |
|
interpolation='none') |
|
ax.set_xticks(np.arange(0, alignment.shape[1], 5)) |
|
ax.set_yticks(np.arange(0, alignment.shape[0], 10)) |
|
ax.set_ylabel("$S_p$ index") |
|
ax.set_xlabel("$H_c$ index") |
|
fig.colorbar(im, ax=ax) |
|
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') |
|
plt.close(fig) |
|
|
|
|
|
|
|
|