|
from utils.hparams import hparams |
|
from modules.commons.common_layers import * |
|
from modules.commons.common_layers import Embedding |
|
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \ |
|
EnergyPredictor, FastspeechEncoder |
|
from utils.cwt import cwt2f0 |
|
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0 |
|
import torch.nn as nn |
|
from modules.commons.rel_transformer import RelTransformerEncoder, BERTRelTransformerEncoder |
|
FS_ENCODERS = { |
|
'fft': lambda hp, embed_tokens, d: FastspeechEncoder( |
|
embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'], |
|
num_heads=hp['num_heads']), |
|
} |
|
|
|
FS_DECODERS = { |
|
'fft': lambda hp: FastspeechDecoder( |
|
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), |
|
} |
|
|
|
|
|
class FastSpeech2(nn.Module): |
|
def __init__(self, dictionary, out_dims=None): |
|
super().__init__() |
|
self.dictionary = dictionary |
|
self.padding_idx = dictionary.pad() |
|
self.enc_layers = hparams['enc_layers'] |
|
self.dec_layers = hparams['dec_layers'] |
|
self.hidden_size = hparams['hidden_size'] |
|
self.encoder_embed_tokens = self.build_embedding(self.dictionary, self.hidden_size) |
|
if hparams.get("use_bert", False): |
|
self.ph_encoder = BERTRelTransformerEncoder(len(self.dictionary), hparams['hidden_size'], hparams['hidden_size'], |
|
hparams['ffn_hidden_size'], hparams['num_heads'], hparams['enc_layers'], |
|
hparams['enc_ffn_kernel_size'], hparams['dropout'], prenet=hparams['enc_prenet'], pre_ln=hparams['enc_pre_ln']) |
|
else: |
|
self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary) |
|
self.decoder = FS_DECODERS[hparams['decoder_type']](hparams) |
|
self.out_dims = hparams['audio_num_mel_bins'] if out_dims is None else out_dims |
|
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True) |
|
|
|
if hparams['use_spk_id']: |
|
self.spk_embed_proj = Embedding(hparams['num_spk'] + 1, self.hidden_size) |
|
if hparams['use_split_spk_id']: |
|
self.spk_embed_f0 = Embedding(hparams['num_spk'] + 1, self.hidden_size) |
|
self.spk_embed_dur = Embedding(hparams['num_spk'] + 1, self.hidden_size) |
|
elif hparams['use_spk_embed']: |
|
self.spk_embed_proj = Linear(256, self.hidden_size, bias=True) |
|
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size |
|
self.dur_predictor = DurationPredictor( |
|
self.hidden_size, |
|
n_chans=predictor_hidden, |
|
n_layers=hparams['dur_predictor_layers'], |
|
dropout_rate=hparams['predictor_dropout'], |
|
kernel_size=hparams['dur_predictor_kernel']) |
|
self.length_regulator = LengthRegulator() |
|
if hparams['use_pitch_embed']: |
|
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx) |
|
self.pitch_predictor = PitchPredictor( |
|
self.hidden_size, |
|
n_chans=predictor_hidden, |
|
n_layers=hparams['predictor_layers'], |
|
dropout_rate=hparams['predictor_dropout'], |
|
odim=2 if hparams['pitch_type'] == 'frame' else 1, |
|
kernel_size=hparams['predictor_kernel']) |
|
if hparams.get('use_energy_embed', False): |
|
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx) |
|
self.energy_predictor = EnergyPredictor( |
|
self.hidden_size, |
|
n_chans=predictor_hidden, |
|
n_layers=hparams['predictor_layers'], |
|
dropout_rate=hparams['predictor_dropout'], odim=1, |
|
kernel_size=hparams['predictor_kernel']) |
|
|
|
def build_embedding(self, dictionary, embed_dim): |
|
num_embeddings = len(dictionary) |
|
emb = Embedding(num_embeddings, embed_dim, self.padding_idx) |
|
return emb |
|
|
|
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, |
|
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False, |
|
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): |
|
ret = {} |
|
if hparams.get("use_bert", False): |
|
encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=kwargs['ph2word'], ret=ret) |
|
else: |
|
encoder_out = self.encoder(txt_tokens) |
|
src_nonpadding = (txt_tokens > 0).float()[:, :, None] |
|
|
|
|
|
|
|
|
|
var_embed = 0 |
|
|
|
|
|
|
|
if hparams['use_spk_embed']: |
|
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] |
|
elif hparams['use_spk_id']: |
|
spk_embed_id = spk_embed |
|
if spk_embed_dur_id is None: |
|
spk_embed_dur_id = spk_embed_id |
|
if spk_embed_f0_id is None: |
|
spk_embed_f0_id = spk_embed_id |
|
spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :] |
|
spk_embed_dur = spk_embed_f0 = spk_embed |
|
if hparams['use_split_spk_id']: |
|
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] |
|
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] |
|
else: |
|
spk_embed_dur = spk_embed_f0 = spk_embed = 0 |
|
|
|
|
|
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding |
|
|
|
mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret) |
|
|
|
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) |
|
|
|
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) |
|
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) |
|
|
|
tgt_nonpadding = (mel2ph > 0).float()[:, :, None] |
|
|
|
|
|
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding |
|
if hparams['use_pitch_embed']: |
|
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding |
|
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) |
|
if hparams.get('use_energy_embed', False): |
|
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) |
|
|
|
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding |
|
|
|
if skip_decoder: |
|
return ret |
|
ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) |
|
|
|
return ret |
|
|
|
def add_dur(self, dur_input, mel2ph, txt_tokens, ret): |
|
""" |
|
|
|
:param dur_input: [B, T_txt, H] |
|
:param mel2ph: [B, T_mel] |
|
:param txt_tokens: [B, T_txt] |
|
:param ret: |
|
:return: |
|
""" |
|
src_padding = txt_tokens == 0 |
|
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) |
|
if mel2ph is None: |
|
dur, xs = self.dur_predictor.inference(dur_input, src_padding) |
|
ret['dur'] = xs |
|
ret['dur_choice'] = dur |
|
mel2ph = self.length_regulator(dur, src_padding).detach() |
|
|
|
|
|
|
|
|
|
else: |
|
ret['dur'] = self.dur_predictor(dur_input, src_padding) |
|
ret['mel2ph'] = mel2ph |
|
return mel2ph |
|
|
|
def add_energy(self, decoder_inp, energy, ret): |
|
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) |
|
ret['energy_pred'] = energy_pred = self.energy_predictor(decoder_inp)[:, :, 0] |
|
if energy is None: |
|
energy = energy_pred |
|
energy = torch.clamp(energy * 256 // 4, max=255).long() |
|
energy_embed = self.energy_embed(energy) |
|
return energy_embed |
|
|
|
def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None): |
|
if hparams['pitch_type'] == 'ph': |
|
pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach()) |
|
pitch_padding = encoder_out.sum().abs() == 0 |
|
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding) |
|
pitch = f0_to_coarse(f0_denorm) |
|
pitch = F.pad(pitch, [1, 0]) |
|
pitch = torch.gather(pitch, 1, mel2ph) |
|
pitch_embed = self.pitch_embed(pitch) |
|
return pitch_embed |
|
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) |
|
|
|
pitch_padding = mel2ph == 0 |
|
|
|
if hparams['pitch_type'] == 'cwt': |
|
pitch_padding = None |
|
ret['cwt'] = cwt_out = self.cwt_predictor(decoder_inp) |
|
stats_out = self.cwt_stats_layers(encoder_out[:, 0, :]) |
|
mean = ret['f0_mean'] = stats_out[:, 0] |
|
std = ret['f0_std'] = stats_out[:, 1] |
|
cwt_spec = cwt_out[:, :, :10] |
|
if f0 is None: |
|
std = std * hparams['cwt_std_scale'] |
|
f0 = self.cwt2f0_norm(cwt_spec, mean, std, mel2ph) |
|
if hparams['use_uv']: |
|
assert cwt_out.shape[-1] == 11 |
|
uv = cwt_out[:, :, -1] > 0 |
|
elif hparams['pitch_ar']: |
|
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if self.training else None) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
else: |
|
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
if hparams['use_uv'] and uv is None: |
|
uv = pitch_pred[:, :, 1] > 0 |
|
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding) |
|
if pitch_padding is not None: |
|
f0[pitch_padding] = 0 |
|
|
|
pitch = f0_to_coarse(f0_denorm) |
|
pitch_embed = self.pitch_embed(pitch) |
|
return pitch_embed |
|
|
|
def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs): |
|
x = decoder_inp |
|
x = self.decoder(x) |
|
x = self.mel_out(x) |
|
return x * tgt_nonpadding |
|
|
|
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): |
|
f0 = cwt2f0(cwt_spec, mean, std, hparams['cwt_scales']) |
|
f0 = torch.cat( |
|
[f0] + [f0[:, -1:]] * (mel2ph.shape[1] - f0.shape[1]), 1) |
|
f0_norm = norm_f0(f0, None, hparams) |
|
return f0_norm |
|
|
|
def out2mel(self, out): |
|
return out |
|
|
|
@staticmethod |
|
def mel_norm(x): |
|
return (x + 5.5) / (6.3 / 2) - 1 |
|
|
|
@staticmethod |
|
def mel_denorm(x): |
|
return (x + 1) * (6.3 / 2) - 5.5 |
|
|
|
def expand_states(self, h, mel2ph): |
|
h = F.pad(h, [0, 0, 1, 0]) |
|
mel2ph_ = mel2ph[..., None].repeat([1, 1, h.shape[-1]]) |
|
h = torch.gather(h, 1, mel2ph_) |
|
return h |
|
|