|
import torch |
|
import torch.distributions as dist |
|
from torch import nn |
|
from modules.commons.normalizing_flow.glow_modules import Glow |
|
from modules.portaspeech.portaspeech import PortaSpeech |
|
from utils.hparams import hparams |
|
|
|
class PortaSpeechFlow(PortaSpeech): |
|
def __init__(self, ph_dict_size, word_dict_size, out_dims=None): |
|
super().__init__(ph_dict_size, word_dict_size, out_dims) |
|
cond_hs = 80 |
|
if hparams.get('use_txt_cond', True): |
|
cond_hs = cond_hs + hparams['hidden_size'] |
|
if hparams.get('use_latent_cond', False): |
|
cond_hs = cond_hs + hparams['latent_size'] |
|
if hparams['use_cond_proj']: |
|
self.g_proj = nn.Conv1d(cond_hs, 160, 5, padding=2) |
|
cond_hs = 160 |
|
self.post_flow = Glow( |
|
80, hparams['post_glow_hidden'], hparams['post_glow_kernel_size'], 1, |
|
hparams['post_glow_n_blocks'], hparams['post_glow_n_block_layers'], |
|
n_split=4, n_sqz=2, |
|
gin_channels=cond_hs, |
|
share_cond_layers=hparams['post_share_cond_layers'], |
|
share_wn_layers=hparams['share_wn_layers'], |
|
sigmoid_scale=hparams['sigmoid_scale'] |
|
) |
|
self.prior_dist = dist.Normal(0, 1) |
|
|
|
def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None, |
|
spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None, |
|
forward_post_glow=True, two_stage=True, global_step=None, **kwargs): |
|
is_training = self.training |
|
train_fvae = not (forward_post_glow and two_stage) |
|
if not train_fvae: |
|
self.eval() |
|
with torch.set_grad_enabled(mode=train_fvae): |
|
ret = super(PortaSpeechFlow, self).forward( |
|
txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, |
|
spk_embed, spk_id, pitch, infer, tgt_mels, global_step, **kwargs) |
|
if (forward_post_glow or not two_stage) and hparams['use_post_flow']: |
|
self.run_post_glow(tgt_mels, infer, is_training, ret) |
|
return ret |
|
|
|
def run_post_glow(self, tgt_mels, infer, is_training, ret): |
|
x_recon = ret['mel_out'].transpose(1, 2) |
|
g = x_recon |
|
B, _, T = g.shape |
|
if hparams.get('use_txt_cond', True): |
|
g = torch.cat([g, ret['decoder_inp'].transpose(1, 2)], 1) |
|
if hparams.get('use_latent_cond', False): |
|
g_z = ret['z_p'][:, :, :, None].repeat(1, 1, 1, 4).reshape(B, -1, T) |
|
g = torch.cat([g, g_z], 1) |
|
if hparams['use_cond_proj']: |
|
g = self.g_proj(g) |
|
prior_dist = self.prior_dist |
|
if not infer: |
|
if is_training: |
|
self.post_flow.train() |
|
nonpadding = ret['nonpadding'].transpose(1, 2) |
|
y_lengths = nonpadding.sum(-1) |
|
if hparams['detach_postflow_input']: |
|
g = g.detach() |
|
tgt_mels = tgt_mels.transpose(1, 2) |
|
z_postflow, ldj = self.post_flow(tgt_mels, nonpadding, g=g) |
|
ldj = ldj / y_lengths / 80 |
|
ret['z_pf'], ret['ldj_pf'] = z_postflow, ldj |
|
ret['postflow'] = -prior_dist.log_prob(z_postflow).mean() - ldj.mean() |
|
if torch.isnan(ret['postflow']): |
|
ret['postflow'] = None |
|
else: |
|
nonpadding = torch.ones_like(x_recon[:, :1, :]) |
|
z_post = torch.randn(x_recon.shape).to(g.device) * hparams['noise_scale'] |
|
x_recon, _ = self.post_flow(z_post, nonpadding, g, reverse=True) |
|
ret['mel_out'] = x_recon.transpose(1, 2) |
|
|