|
import glob |
|
import logging |
|
import re |
|
import time |
|
from collections import defaultdict |
|
import os |
|
import sys |
|
import shutil |
|
import types |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from torch import nn |
|
|
|
|
|
def tensors_to_scalars(metrics): |
|
new_metrics = {} |
|
for k, v in metrics.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
if type(v) is dict: |
|
v = tensors_to_scalars(v) |
|
new_metrics[k] = v |
|
return new_metrics |
|
|
|
|
|
class AvgrageMeter(object): |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.cnt = 0 |
|
|
|
def update(self, val, n=1): |
|
self.sum += val * n |
|
self.cnt += n |
|
self.avg = self.sum / self.cnt |
|
|
|
|
|
def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): |
|
"""Convert a list of 1d tensors into a padded 2d tensor.""" |
|
size = max(v.size(0) for v in values) if max_len is None else max_len |
|
res = values[0].new(len(values), size).fill_(pad_idx) |
|
|
|
def copy_tensor(src, dst): |
|
assert dst.numel() == src.numel() |
|
if shift_right: |
|
dst[1:] = src[:-1] |
|
dst[0] = shift_id |
|
else: |
|
dst.copy_(src) |
|
|
|
for i, v in enumerate(values): |
|
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) |
|
return res |
|
|
|
|
|
def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None): |
|
"""Convert a list of 2d tensors into a padded 3d tensor.""" |
|
size = max(v.size(0) for v in values) if max_len is None else max_len |
|
res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx) |
|
|
|
def copy_tensor(src, dst): |
|
assert dst.numel() == src.numel() |
|
if shift_right: |
|
dst[1:] = src[:-1] |
|
else: |
|
dst.copy_(src) |
|
|
|
for i, v in enumerate(values): |
|
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) |
|
return res |
|
|
|
|
|
def _is_batch_full(batch, num_tokens, max_tokens, max_sentences): |
|
if len(batch) == 0: |
|
return 0 |
|
if len(batch) == max_sentences: |
|
return 1 |
|
if num_tokens > max_tokens: |
|
return 1 |
|
return 0 |
|
|
|
|
|
def batch_by_size( |
|
indices, num_tokens_fn, max_tokens=None, max_sentences=None, |
|
required_batch_size_multiple=1, distributed=False |
|
): |
|
""" |
|
Yield mini-batches of indices bucketed by size. Batches may contain |
|
sequences of different lengths. |
|
|
|
Args: |
|
indices (List[int]): ordered list of dataset indices |
|
num_tokens_fn (callable): function that returns the number of tokens at |
|
a given index |
|
max_tokens (int, optional): max number of tokens in each batch |
|
(default: None). |
|
max_sentences (int, optional): max number of sentences in each |
|
batch (default: None). |
|
required_batch_size_multiple (int, optional): require batch size to |
|
be a multiple of N (default: 1). |
|
""" |
|
max_tokens = max_tokens if max_tokens is not None else sys.maxsize |
|
max_sentences = max_sentences if max_sentences is not None else sys.maxsize |
|
bsz_mult = required_batch_size_multiple |
|
|
|
if isinstance(indices, types.GeneratorType): |
|
indices = np.fromiter(indices, dtype=np.int64, count=-1) |
|
|
|
sample_len = 0 |
|
sample_lens = [] |
|
batch = [] |
|
batches = [] |
|
for i in range(len(indices)): |
|
idx = indices[i] |
|
num_tokens = num_tokens_fn(idx) |
|
sample_lens.append(num_tokens) |
|
sample_len = max(sample_len, num_tokens) |
|
assert sample_len <= max_tokens, ( |
|
"sentence at index {} of size {} exceeds max_tokens " |
|
"limit of {}!".format(idx, sample_len, max_tokens) |
|
) |
|
num_tokens = (len(batch) + 1) * sample_len |
|
|
|
if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): |
|
mod_len = max( |
|
bsz_mult * (len(batch) // bsz_mult), |
|
len(batch) % bsz_mult, |
|
) |
|
batches.append(batch[:mod_len]) |
|
batch = batch[mod_len:] |
|
sample_lens = sample_lens[mod_len:] |
|
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 |
|
batch.append(idx) |
|
if len(batch) > 0: |
|
batches.append(batch) |
|
return batches |
|
|
|
|
|
def make_positions(tensor, padding_idx): |
|
"""Replace non-padding symbols with their position numbers. |
|
|
|
Position numbers begin at padding_idx+1. Padding symbols are ignored. |
|
""" |
|
|
|
|
|
|
|
|
|
mask = tensor.ne(padding_idx).int() |
|
return ( |
|
torch.cumsum(mask, dim=1).type_as(mask) * mask |
|
).long() + padding_idx |
|
|
|
|
|
def softmax(x, dim): |
|
return F.softmax(x, dim=dim, dtype=torch.float32) |
|
|
|
|
|
def unpack_dict_to_list(samples): |
|
samples_ = [] |
|
bsz = samples.get('outputs').size(0) |
|
for i in range(bsz): |
|
res = {} |
|
for k, v in samples.items(): |
|
try: |
|
res[k] = v[i] |
|
except: |
|
pass |
|
samples_.append(res) |
|
return samples_ |
|
|
|
|
|
def load_ckpt(cur_model, ckpt_base_dir, prefix_in_ckpt='model', force=True, strict=True): |
|
if os.path.isfile(ckpt_base_dir): |
|
base_dir = os.path.dirname(ckpt_base_dir) |
|
checkpoint_path = [ckpt_base_dir] |
|
else: |
|
base_dir = ckpt_base_dir |
|
checkpoint_path = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= |
|
lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0])) |
|
if len(checkpoint_path) > 0: |
|
checkpoint_path = checkpoint_path[-1] |
|
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] |
|
state_dict = {k[len(prefix_in_ckpt) + 1:]: v for k, v in state_dict.items() |
|
if k.startswith(f'{prefix_in_ckpt}.')} |
|
if not strict: |
|
cur_model_state_dict = cur_model.state_dict() |
|
unmatched_keys = [] |
|
for key, param in state_dict.items(): |
|
if key in cur_model_state_dict: |
|
new_param = cur_model_state_dict[key] |
|
if new_param.shape != param.shape: |
|
unmatched_keys.append(key) |
|
print("| Unmatched keys: ", key, new_param.shape, param.shape) |
|
for key in unmatched_keys: |
|
del state_dict[key] |
|
cur_model.load_state_dict(state_dict, strict=strict) |
|
print(f"| load '{prefix_in_ckpt}' from '{checkpoint_path}'.") |
|
else: |
|
e_msg = f"| ckpt not found in {base_dir}." |
|
if force: |
|
assert False, e_msg |
|
else: |
|
print(e_msg) |
|
|
|
|
|
def remove_padding(x, padding_idx=0): |
|
if x is None: |
|
return None |
|
assert len(x.shape) in [1, 2] |
|
if len(x.shape) == 2: |
|
return x[np.abs(x).sum(-1) != padding_idx] |
|
elif len(x.shape) == 1: |
|
return x[x != padding_idx] |
|
|
|
|
|
class Timer: |
|
timer_map = {} |
|
|
|
def __init__(self, name, print_time=False): |
|
if name not in Timer.timer_map: |
|
Timer.timer_map[name] = 0 |
|
self.name = name |
|
self.print_time = print_time |
|
|
|
def __enter__(self): |
|
self.t = time.time() |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
Timer.timer_map[self.name] += time.time() - self.t |
|
if self.print_time: |
|
print(self.name, Timer.timer_map[self.name]) |
|
|
|
|
|
def print_arch(model, model_name='model'): |
|
print(f"| {model_name} Arch: ", model) |
|
num_params(model, model_name=model_name) |
|
|
|
|
|
def num_params(model, print_out=True, model_name="model"): |
|
parameters = filter(lambda p: p.requires_grad, model.parameters()) |
|
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 |
|
if print_out: |
|
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) |
|
return parameters |
|
|