|
import os |
|
import sys |
|
sys.path.insert(1, os.path.join(sys.path[0], '../utils')) |
|
import numpy as np |
|
import argparse |
|
import librosa |
|
import matplotlib.pyplot as plt |
|
import torch |
|
|
|
from utilities import create_folder, get_filename |
|
from models import * |
|
from pytorch_utils import move_data_to_device |
|
import config |
|
|
|
def audio_tagging(args): |
|
"""Inference audio tagging result of an audio clip. |
|
""" |
|
|
|
|
|
sample_rate = args.sample_rate |
|
window_size = args.window_size |
|
hop_size = args.hop_size |
|
mel_bins = args.mel_bins |
|
fmin = args.fmin |
|
fmax = args.fmax |
|
model_type = args.model_type |
|
checkpoint_path = args.checkpoint_path |
|
audio_path = args.audio_path |
|
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') |
|
|
|
classes_num = config.classes_num |
|
labels = config.labels |
|
|
|
|
|
Model = eval(model_type) |
|
model = Model(sample_rate=sample_rate, window_size=window_size, |
|
hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, |
|
classes_num=classes_num) |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(checkpoint['model']) |
|
|
|
|
|
if 'cuda' in str(device): |
|
model.to(device) |
|
print('GPU number: {}'.format(torch.cuda.device_count())) |
|
model = torch.nn.DataParallel(model) |
|
else: |
|
print('Using CPU.') |
|
|
|
|
|
(waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) |
|
|
|
waveform = waveform[None, :] |
|
waveform = move_data_to_device(waveform, device) |
|
|
|
|
|
with torch.no_grad(): |
|
model.eval() |
|
batch_output_dict = model(waveform, None) |
|
|
|
clipwise_output = batch_output_dict['clipwise_output'].data.cpu().numpy()[0] |
|
"""(classes_num,)""" |
|
|
|
sorted_indexes = np.argsort(clipwise_output)[::-1] |
|
|
|
|
|
for k in range(10): |
|
print('{}: {:.3f}'.format(np.array(labels)[sorted_indexes[k]], |
|
clipwise_output[sorted_indexes[k]])) |
|
|
|
|
|
if 'embedding' in batch_output_dict.keys(): |
|
embedding = batch_output_dict['embedding'].data.cpu().numpy()[0] |
|
print('embedding: {}'.format(embedding.shape)) |
|
|
|
return clipwise_output, labels |
|
|
|
|
|
def sound_event_detection(args): |
|
"""Inference sound event detection result of an audio clip. |
|
""" |
|
|
|
|
|
sample_rate = args.sample_rate |
|
window_size = args.window_size |
|
hop_size = args.hop_size |
|
mel_bins = args.mel_bins |
|
fmin = args.fmin |
|
fmax = args.fmax |
|
model_type = args.model_type |
|
checkpoint_path = args.checkpoint_path |
|
audio_path = args.audio_path |
|
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') |
|
|
|
classes_num = config.classes_num |
|
labels = config.labels |
|
frames_per_second = sample_rate // hop_size |
|
|
|
|
|
fig_path = os.path.join('results', '{}.png'.format(get_filename(audio_path))) |
|
create_folder(os.path.dirname(fig_path)) |
|
|
|
|
|
Model = eval(model_type) |
|
model = Model(sample_rate=sample_rate, window_size=window_size, |
|
hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, |
|
classes_num=classes_num) |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(checkpoint['model']) |
|
|
|
|
|
print('GPU number: {}'.format(torch.cuda.device_count())) |
|
model = torch.nn.DataParallel(model) |
|
|
|
if 'cuda' in str(device): |
|
model.to(device) |
|
|
|
|
|
(waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) |
|
|
|
waveform = waveform[None, :] |
|
waveform = move_data_to_device(waveform, device) |
|
|
|
|
|
with torch.no_grad(): |
|
model.eval() |
|
batch_output_dict = model(waveform, None) |
|
|
|
framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] |
|
"""(time_steps, classes_num)""" |
|
|
|
print('Sound event detection result (time_steps x classes_num): {}'.format( |
|
framewise_output.shape)) |
|
|
|
sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] |
|
|
|
top_k = 10 |
|
top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]] |
|
"""(time_steps, top_k)""" |
|
|
|
|
|
stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=window_size, |
|
hop_length=hop_size, window='hann', center=True) |
|
frames_num = stft.shape[-1] |
|
|
|
fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) |
|
axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') |
|
axs[0].set_ylabel('Frequency bins') |
|
axs[0].set_title('Log spectrogram') |
|
axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) |
|
axs[1].xaxis.set_ticks(np.arange(0, frames_num, frames_per_second)) |
|
axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / frames_per_second)) |
|
axs[1].yaxis.set_ticks(np.arange(0, top_k)) |
|
axs[1].yaxis.set_ticklabels(np.array(labels)[sorted_indexes[0 : top_k]]) |
|
axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) |
|
axs[1].set_xlabel('Seconds') |
|
axs[1].xaxis.set_ticks_position('bottom') |
|
|
|
plt.tight_layout() |
|
plt.savefig(fig_path) |
|
print('Save sound event detection visualization to {}'.format(fig_path)) |
|
|
|
return framewise_output, labels |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='Example of parser. ') |
|
subparsers = parser.add_subparsers(dest='mode') |
|
|
|
parser_at = subparsers.add_parser('audio_tagging') |
|
parser_at.add_argument('--sample_rate', type=int, default=32000) |
|
parser_at.add_argument('--window_size', type=int, default=1024) |
|
parser_at.add_argument('--hop_size', type=int, default=320) |
|
parser_at.add_argument('--mel_bins', type=int, default=64) |
|
parser_at.add_argument('--fmin', type=int, default=50) |
|
parser_at.add_argument('--fmax', type=int, default=14000) |
|
parser_at.add_argument('--model_type', type=str, required=True) |
|
parser_at.add_argument('--checkpoint_path', type=str, required=True) |
|
parser_at.add_argument('--audio_path', type=str, required=True) |
|
parser_at.add_argument('--cuda', action='store_true', default=False) |
|
|
|
parser_sed = subparsers.add_parser('sound_event_detection') |
|
parser_sed.add_argument('--sample_rate', type=int, default=32000) |
|
parser_sed.add_argument('--window_size', type=int, default=1024) |
|
parser_sed.add_argument('--hop_size', type=int, default=320) |
|
parser_sed.add_argument('--mel_bins', type=int, default=64) |
|
parser_sed.add_argument('--fmin', type=int, default=50) |
|
parser_sed.add_argument('--fmax', type=int, default=14000) |
|
parser_sed.add_argument('--model_type', type=str, required=True) |
|
parser_sed.add_argument('--checkpoint_path', type=str, required=True) |
|
parser_sed.add_argument('--audio_path', type=str, required=True) |
|
parser_sed.add_argument('--cuda', action='store_true', default=False) |
|
|
|
args = parser.parse_args() |
|
|
|
if args.mode == 'audio_tagging': |
|
audio_tagging(args) |
|
|
|
elif args.mode == 'sound_event_detection': |
|
sound_event_detection(args) |
|
|
|
else: |
|
raise Exception('Error argument!') |