|
import numpy as np |
|
import argparse |
|
import csv |
|
import os |
|
import glob |
|
import datetime |
|
import time |
|
import logging |
|
import h5py |
|
import librosa |
|
|
|
from utilities import (create_folder, get_filename, create_logging, |
|
float32_to_int16, pad_or_truncate, read_metadata) |
|
import config |
|
|
|
|
|
def split_unbalanced_csv_to_partial_csvs(args): |
|
"""Split unbalanced csv to part csvs. Each part csv contains up to 50000 ids. |
|
""" |
|
|
|
unbalanced_csv_path = args.unbalanced_csv |
|
unbalanced_partial_csvs_dir = args.unbalanced_partial_csvs_dir |
|
|
|
create_folder(unbalanced_partial_csvs_dir) |
|
|
|
with open(unbalanced_csv_path, 'r') as f: |
|
lines = f.readlines() |
|
|
|
lines = lines[3:] |
|
audios_num_per_file = 50000 |
|
|
|
files_num = int(np.ceil(len(lines) / float(audios_num_per_file))) |
|
|
|
for r in range(files_num): |
|
lines_per_file = lines[r * audios_num_per_file : |
|
(r + 1) * audios_num_per_file] |
|
|
|
out_csv_path = os.path.join(unbalanced_partial_csvs_dir, |
|
'unbalanced_train_segments_part{:02d}.csv'.format(r)) |
|
|
|
with open(out_csv_path, 'w') as f: |
|
f.write('empty\n') |
|
f.write('empty\n') |
|
f.write('empty\n') |
|
for line in lines_per_file: |
|
f.write(line) |
|
|
|
print('Write out csv to {}'.format(out_csv_path)) |
|
|
|
|
|
def download_wavs(args): |
|
"""Download videos and extract audio in wav format. |
|
""" |
|
|
|
|
|
csv_path = args.csv_path |
|
audios_dir = args.audios_dir |
|
mini_data = args.mini_data |
|
|
|
if mini_data: |
|
logs_dir = '_logs/download_dataset/{}'.format(get_filename(csv_path)) |
|
else: |
|
logs_dir = '_logs/download_dataset_minidata/{}'.format(get_filename(csv_path)) |
|
|
|
create_folder(audios_dir) |
|
create_folder(logs_dir) |
|
create_logging(logs_dir, filemode='w') |
|
logging.info('Download log is saved to {}'.format(logs_dir)) |
|
|
|
|
|
with open(csv_path, 'r') as f: |
|
lines = f.readlines() |
|
|
|
lines = lines[3:] |
|
|
|
if mini_data: |
|
lines = lines[0 : 10] |
|
|
|
download_time = time.time() |
|
|
|
|
|
for (n, line) in enumerate(lines): |
|
|
|
items = line.split(', ') |
|
audio_id = items[0] |
|
start_time = float(items[1]) |
|
end_time = float(items[2]) |
|
duration = end_time - start_time |
|
|
|
logging.info('{} {} start_time: {:.1f}, end_time: {:.1f}'.format( |
|
n, audio_id, start_time, end_time)) |
|
|
|
|
|
video_name = os.path.join(audios_dir, '_Y{}.%(ext)s'.format(audio_id)) |
|
os.system("youtube-dl --quiet -o '{}' -x https://www.youtube.com/watch?v={}"\ |
|
.format(video_name, audio_id)) |
|
|
|
video_paths = glob.glob(os.path.join(audios_dir, '_Y' + audio_id + '.*')) |
|
|
|
|
|
if len(video_paths) > 0: |
|
video_path = video_paths[0] |
|
|
|
|
|
|
|
audio_path = os.path.join(audios_dir, 'Y' + audio_id + '.wav') |
|
|
|
|
|
os.system("ffmpeg -loglevel panic -i {} -ac 1 -ar 32000 -ss {} -t 00:00:{} {} "\ |
|
.format(video_path, |
|
str(datetime.timedelta(seconds=start_time)), duration, |
|
audio_path)) |
|
|
|
|
|
os.system("rm {}".format(video_path)) |
|
|
|
logging.info("Download and convert to {}".format(audio_path)) |
|
|
|
logging.info('Download finished! Time spent: {:.3f} s'.format( |
|
time.time() - download_time)) |
|
|
|
logging.info('Logs can be viewed in {}'.format(logs_dir)) |
|
|
|
|
|
def pack_waveforms_to_hdf5(args): |
|
"""Pack waveform and target of several audio clips to a single hdf5 file. |
|
This can speed up loading and training. |
|
""" |
|
|
|
|
|
audios_dir = args.audios_dir |
|
csv_path = args.csv_path |
|
waveforms_hdf5_path = args.waveforms_hdf5_path |
|
mini_data = args.mini_data |
|
|
|
clip_samples = config.clip_samples |
|
classes_num = config.classes_num |
|
sample_rate = config.sample_rate |
|
id_to_ix = config.id_to_ix |
|
|
|
|
|
if mini_data: |
|
prefix = 'mini_' |
|
waveforms_hdf5_path += '.mini' |
|
else: |
|
prefix = '' |
|
|
|
create_folder(os.path.dirname(waveforms_hdf5_path)) |
|
|
|
logs_dir = '_logs/pack_waveforms_to_hdf5/{}{}'.format(prefix, get_filename(csv_path)) |
|
create_folder(logs_dir) |
|
create_logging(logs_dir, filemode='w') |
|
logging.info('Write logs to {}'.format(logs_dir)) |
|
|
|
|
|
meta_dict = read_metadata(csv_path, classes_num, id_to_ix) |
|
|
|
if mini_data: |
|
mini_num = 10 |
|
for key in meta_dict.keys(): |
|
meta_dict[key] = meta_dict[key][0 : mini_num] |
|
|
|
audios_num = len(meta_dict['audio_name']) |
|
|
|
|
|
total_time = time.time() |
|
|
|
with h5py.File(waveforms_hdf5_path, 'w') as hf: |
|
hf.create_dataset('audio_name', shape=((audios_num,)), dtype='S20') |
|
hf.create_dataset('waveform', shape=((audios_num, clip_samples)), dtype=np.int16) |
|
hf.create_dataset('target', shape=((audios_num, classes_num)), dtype=np.bool) |
|
hf.attrs.create('sample_rate', data=sample_rate, dtype=np.int32) |
|
|
|
|
|
for n in range(audios_num): |
|
audio_path = os.path.join(audios_dir, meta_dict['audio_name'][n]) |
|
|
|
if os.path.isfile(audio_path): |
|
logging.info('{} {}'.format(n, audio_path)) |
|
(audio, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) |
|
audio = pad_or_truncate(audio, clip_samples) |
|
|
|
hf['audio_name'][n] = meta_dict['audio_name'][n].encode() |
|
hf['waveform'][n] = float32_to_int16(audio) |
|
hf['target'][n] = meta_dict['target'][n] |
|
else: |
|
logging.info('{} File does not exist! {}'.format(n, audio_path)) |
|
|
|
logging.info('Write to {}'.format(waveforms_hdf5_path)) |
|
logging.info('Pack hdf5 time: {:.3f}'.format(time.time() - total_time)) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
subparsers = parser.add_subparsers(dest='mode') |
|
|
|
parser_split = subparsers.add_parser('split_unbalanced_csv_to_partial_csvs') |
|
parser_split.add_argument('--unbalanced_csv', type=str, required=True, help='Path of unbalanced_csv file to read.') |
|
parser_split.add_argument('--unbalanced_partial_csvs_dir', type=str, required=True, help='Directory to save out split unbalanced partial csv.') |
|
|
|
parser_download_wavs = subparsers.add_parser('download_wavs') |
|
parser_download_wavs.add_argument('--csv_path', type=str, required=True, help='Path of csv file containing audio info to be downloaded.') |
|
parser_download_wavs.add_argument('--audios_dir', type=str, required=True, help='Directory to save out downloaded audio.') |
|
parser_download_wavs.add_argument('--mini_data', action='store_true', default=True, help='Set true to only download 10 audios for debugging.') |
|
|
|
parser_pack_wavs = subparsers.add_parser('pack_waveforms_to_hdf5') |
|
parser_pack_wavs.add_argument('--csv_path', type=str, required=True, help='Path of csv file containing audio info to be downloaded.') |
|
parser_pack_wavs.add_argument('--audios_dir', type=str, required=True, help='Directory to save out downloaded audio.') |
|
parser_pack_wavs.add_argument('--waveforms_hdf5_path', type=str, required=True, help='Path to save out packed hdf5.') |
|
parser_pack_wavs.add_argument('--mini_data', action='store_true', default=False, help='Set true to only download 10 audios for debugging.') |
|
|
|
args = parser.parse_args() |
|
|
|
if args.mode == 'split_unbalanced_csv_to_partial_csvs': |
|
split_unbalanced_csv_to_partial_csvs(args) |
|
|
|
elif args.mode == 'download_wavs': |
|
download_wavs(args) |
|
|
|
elif args.mode == 'pack_waveforms_to_hdf5': |
|
pack_waveforms_to_hdf5(args) |
|
|
|
else: |
|
raise Exception('Incorrect arguments!') |