|
import os |
|
import sys |
|
import numpy as np |
|
import argparse |
|
import h5py |
|
import time |
|
import pickle |
|
import matplotlib.pyplot as plt |
|
import csv |
|
from sklearn import metrics |
|
|
|
from utilities import (create_folder, get_filename, d_prime) |
|
import config |
|
|
|
|
|
def load_statistics(statistics_path): |
|
statistics_dict = pickle.load(open(statistics_path, 'rb')) |
|
|
|
bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) |
|
bal_map = np.mean(bal_map, axis=-1) |
|
test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) |
|
test_map = np.mean(test_map, axis=-1) |
|
|
|
return bal_map, test_map |
|
|
|
|
|
def crop_label(label): |
|
max_len = 16 |
|
if len(label) <= max_len: |
|
return label |
|
else: |
|
words = label.split(' ') |
|
cropped_label = '' |
|
for w in words: |
|
if len(cropped_label + ' ' + w) > max_len: |
|
break |
|
else: |
|
cropped_label += ' {}'.format(w) |
|
return cropped_label |
|
|
|
|
|
def add_comma(integer): |
|
"""E.g., 1234567 -> 1,234,567 |
|
""" |
|
integer = int(integer) |
|
if integer >= 1000: |
|
return str(integer // 1000) + ',' + str(integer % 1000) |
|
else: |
|
return str(integer) |
|
|
|
|
|
def plot_classwise_iteration_map(args): |
|
|
|
|
|
save_out_path = 'results/classwise_iteration_map.pdf' |
|
create_folder(os.path.dirname(save_out_path)) |
|
|
|
|
|
statistics_dict = pickle.load(open('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl', 'rb')) |
|
|
|
mAP_mat = np.array([e['average_precision'] for e in statistics_dict['test']]) |
|
mAP_mat = mAP_mat[0 : 300, :] |
|
sorted_indexes = np.argsort(config.full_samples_per_class)[::-1] |
|
|
|
fig, axs = plt.subplots(1, 3, figsize=(20, 5)) |
|
ranges = [np.arange(0, 10), np.arange(250, 260), np.arange(517, 527)] |
|
axs[0].set_ylabel('AP') |
|
|
|
for col in range(0, 3): |
|
axs[col].set_ylim(0, 1.) |
|
axs[col].set_xlim(0, 301) |
|
axs[col].set_xlabel('Iterations') |
|
axs[col].set_ylabel('AP') |
|
axs[col].xaxis.set_ticks(np.arange(0, 301, 100)) |
|
axs[col].xaxis.set_ticklabels(['0', '200k', '400k', '600k']) |
|
lines = [] |
|
for _ix in ranges[col]: |
|
_label = crop_label(config.labels[sorted_indexes[_ix]]) + \ |
|
' ({})'.format(add_comma(config.full_samples_per_class[sorted_indexes[_ix]])) |
|
line, = axs[col].plot(mAP_mat[:, sorted_indexes[_ix]], label=_label) |
|
lines.append(line) |
|
box = axs[col].get_position() |
|
axs[col].set_position([box.x0, box.y0, box.width * 1., box.height]) |
|
axs[col].legend(handles=lines, bbox_to_anchor=(1., 1.)) |
|
axs[col].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) |
|
|
|
plt.tight_layout(pad=4, w_pad=1, h_pad=1) |
|
plt.savefig(save_out_path) |
|
print(save_out_path) |
|
|
|
|
|
def plot_six_figures(args): |
|
|
|
|
|
classes_num = config.classes_num |
|
labels = config.labels |
|
max_plot_iteration = 540000 |
|
iterations = np.arange(0, max_plot_iteration, 2000) |
|
|
|
|
|
class_labels_indices_path = os.path.join('metadata', 'class_labels_indices.csv') |
|
save_out_path = 'results/six_figures.pdf' |
|
create_folder(os.path.dirname(save_out_path)) |
|
|
|
|
|
fig, ax = plt.subplots(2, 3, figsize=(14, 7)) |
|
bal_alpha = 0.3 |
|
test_alpha = 1.0 |
|
linewidth = 1. |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 0].plot(test_map, label='Wavegram-Logmel-CNN', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 0].plot(test_map, label='CNN14', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_MobileNetV1_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 0].plot(test_map, label='MobileNetV1', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[0, 0].legend(handles=lines, loc=2) |
|
ax[0, 0].set_title('(a) Comparison of architectures') |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (1.9m)', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_timedomain_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='y', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup-wav (1.9m)', color='y', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_nomixup_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (1.9m)', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_nobalanced_nomixup_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,no-bal,no-mixup (1.9m)', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='m', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (20k)', color='m', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_nomixup_bs32.pkl') |
|
line, = ax[0, 1].plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (20k)', color='k', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[0, 1].legend(handles=lines, loc=2, fontsize=8) |
|
ax[0, 1].set_title('(b) Comparison of training data and augmentation') |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 2].plot(test_map, label='CNN14,emb=2048', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb128_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 2].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 2].plot(test_map, label='CNN14,emb=128', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb32_balanced_mixup_bs32.pkl') |
|
line, = ax[0, 2].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[0, 2].plot(test_map, label='CNN14,emb=32', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[0, 2].legend(handles=lines, loc=2) |
|
ax[0, 2].set_title('(c) Comparison of embedding size') |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 0].plot(test_map, label='CNN14 (100% full)', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.8full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 0].plot(test_map, label='CNN14 (80% full)', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.5full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 0].plot(test_map, label='cnn14 (50% full)', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[1, 0].legend(handles=lines, loc=2) |
|
ax[1, 0].set_title('(d) Comparison of amount of training data') |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 1].plot(test_map, label='CNN14,32kHz', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_16k_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 1].plot(test_map, label='CNN14,16kHz', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_8k_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 1].plot(test_map, label='CNN14,8kHz', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[1, 1].legend(handles=lines, loc=2) |
|
ax[1, 1].set_title('(e) Comparison of sampling rate') |
|
|
|
|
|
if True: |
|
lines = [] |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel128_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 2].plot(bal_map, color='g', alpha=bal_alpha) |
|
line, = ax[1, 2].plot(test_map, label='CNN14,128-melbins', color='g', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) |
|
line, = ax[1, 2].plot(test_map, label='CNN14,64-melbins', color='r', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
|
|
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel32_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl') |
|
line, = ax[1, 2].plot(bal_map, color='b', alpha=bal_alpha) |
|
line, = ax[1, 2].plot(test_map, label='CNN14,32-melbins', color='b', alpha=test_alpha, linewidth=linewidth) |
|
lines.append(line) |
|
|
|
ax[1, 2].legend(handles=lines, loc=2) |
|
ax[1, 2].set_title('(f) Comparison of mel bins number') |
|
|
|
for i in range(2): |
|
for j in range(3): |
|
ax[i, j].set_ylim(0, 0.8) |
|
ax[i, j].set_xlim(0, len(iterations)) |
|
ax[i, j].set_xlabel('Iterations') |
|
ax[i, j].set_ylabel('mAP') |
|
ax[i, j].xaxis.set_ticks(np.arange(0, len(iterations), 50)) |
|
ax[i, j].xaxis.set_ticklabels(['0', '100k', '200k', '300k', '400k', '500k']) |
|
ax[i, j].yaxis.set_ticks(np.arange(0, 0.81, 0.05)) |
|
ax[i, j].yaxis.set_ticklabels(['0', '', '0.1', '', '0.2', '', '0.3', |
|
'', '0.4', '', '0.5', '', '0.6', '', '0.7', '', '0.8']) |
|
ax[i, j].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) |
|
ax[i, j].xaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) |
|
|
|
plt.tight_layout(0, 1, 0) |
|
plt.savefig(save_out_path) |
|
print('Save figure to {}'.format(save_out_path)) |
|
|
|
|
|
def plot_complexity_map(args): |
|
|
|
|
|
save_out_path = 'results/complexity_mAP.pdf' |
|
create_folder(os.path.dirname(save_out_path)) |
|
|
|
plt.figure(figsize=(5, 5)) |
|
fig, ax = plt.subplots(1, 1) |
|
|
|
model_types = np.array(['Cnn6', 'Cnn10', 'Cnn14', 'ResNet22', 'ResNet38', 'ResNet54', |
|
'MobileNetV1', 'MobileNetV2', 'DaiNet', 'LeeNet', 'LeeNet18', |
|
'Res1dNet30', 'Res1dNet44', 'Wavegram-CNN', 'Wavegram-\nLogmel-CNN']) |
|
flops = np.array([21.986, 28.166, 42.220, 30.081, 48.962, 54.563, 3.614, 2.810, |
|
30.395, 4.741, 26.369, 32.688, 61.833, 44.234, 53.510]) |
|
mAPs = np.array([0.343, 0.380, 0.431, 0.430, 0.434, 0.429, 0.389, 0.383, 0.295, |
|
0.266, 0.336, 0.365, 0.355, 0.389, 0.439]) |
|
|
|
sorted_indexes = np.sort(flops) |
|
ax.scatter(flops, mAPs) |
|
|
|
shift = [[-5.5, -0.004], [1, -0.004], [-1, -0.014], [-2, 0.006], [-7, 0.006], |
|
[1, -0.01], [0.5, 0.004], [-1, -0.014], [1, -0.007], [0.8, -0.008], |
|
[1, -0.007], [1, 0.002], [-6, -0.015], [1, -0.008], [0.8, 0]] |
|
|
|
for i, model_type in enumerate(model_types): |
|
ax.annotate(model_type, (flops[i] + shift[i][0], mAPs[i] + shift[i][1])) |
|
|
|
ax.plot(flops[[0, 1, 2]], mAPs[[0, 1, 2]]) |
|
ax.plot(flops[[3, 4, 5]], mAPs[[3, 4, 5]]) |
|
ax.plot(flops[[6, 7]], mAPs[[6, 7]]) |
|
ax.plot(flops[[9, 10]], mAPs[[9, 10]]) |
|
ax.plot(flops[[11, 12]], mAPs[[11, 12]]) |
|
ax.plot(flops[[13, 14]], mAPs[[13, 14]]) |
|
|
|
ax.set_xlim(0, 70) |
|
ax.set_ylim(0.2, 0.5) |
|
ax.set_xlabel('Multi-load_statisticss (million)', fontsize=15) |
|
ax.set_ylabel('mAP', fontsize=15) |
|
ax.tick_params(axis='x', labelsize=12) |
|
ax.tick_params(axis='y', labelsize=12) |
|
|
|
plt.tight_layout(0, 0, 0) |
|
|
|
plt.savefig(save_out_path) |
|
print('Write out figure to {}'.format(save_out_path)) |
|
|
|
|
|
def plot_long_fig(args): |
|
|
|
|
|
stats = pickle.load(open('paper_statistics/stats_for_long_fig.pkl', 'rb')) |
|
|
|
save_out_path = 'results/long_fig.pdf' |
|
create_folder(os.path.dirname(save_out_path)) |
|
|
|
|
|
N = len(config.labels) |
|
sorted_indexes = stats['sorted_indexes_for_plot'] |
|
sorted_labels = np.array(config.labels)[sorted_indexes] |
|
audio_clips_per_class = stats['official_balanced_training_samples'] + stats['official_unbalanced_training_samples'] |
|
audio_clips_per_class = audio_clips_per_class[sorted_indexes] |
|
|
|
|
|
(ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b) = prepare_plot_long_4_rows(sorted_labels) |
|
|
|
|
|
ax1a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) |
|
ax2a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) |
|
ax3a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) |
|
ax4a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) |
|
|
|
|
|
"""Average instance system of [1] with an mAP of 0.317. |
|
[1] Kong, Qiuqiang, Changsong Yu, Yong Xu, Turab Iqbal, Wenwu Wang, and |
|
Mark D. Plumbley. "Weakly labelled audioset tagging with attention neural |
|
networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing |
|
27, no. 11 (2019): 1791-1802.""" |
|
maps_avg_instances = stats['averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations']['eval']['average_precision'] |
|
maps_avg_instances = maps_avg_instances[sorted_indexes] |
|
|
|
|
|
maps_panns_cnn14 = stats['panns_cnn14']['eval']['average_precision'] |
|
maps_panns_cnn14 = maps_panns_cnn14[sorted_indexes] |
|
|
|
|
|
maps_panns_mobilenetv1 = stats['panns_mobilenetv1']['eval']['average_precision'] |
|
maps_panns_mobilenetv1 = maps_panns_mobilenetv1[sorted_indexes] |
|
|
|
|
|
maps_panns_wavegram_logmel_cnn14 = stats['panns_wavegram_logmel_cnn14']['eval']['average_precision'] |
|
maps_panns_wavegram_logmel_cnn14 = maps_panns_wavegram_logmel_cnn14[sorted_indexes] |
|
|
|
|
|
_scatter_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='g') |
|
_scatter_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='r') |
|
_scatter_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, s=5, c='b') |
|
_scatter_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, s=5, c='k') |
|
|
|
linewidth = 0.7 |
|
line0te = _plot_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b, |
|
c='g', linewidth=linewidth, label='AP with Wavegram-Logmel-CNN') |
|
line1te = _plot_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, c='r', |
|
linewidth=linewidth, label='AP with CNN14') |
|
line2te = _plot_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, c='b', |
|
linewidth=linewidth, label='AP with MobileNetV1') |
|
line3te = _plot_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, c='k', |
|
linewidth=linewidth, label='AP with averaging instances (baseline)') |
|
|
|
|
|
label_quality = stats['label_quality'] |
|
sorted_label_quality = np.array(label_quality)[sorted_indexes] |
|
for k in range(len(sorted_label_quality)): |
|
if sorted_label_quality[k] and sorted_label_quality[k] == 1: |
|
sorted_label_quality[k] = 0.99 |
|
|
|
ax1b.scatter(np.arange(N)[sorted_label_quality != None], |
|
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+') |
|
ax2b.scatter(np.arange(N)[sorted_label_quality != None], |
|
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+') |
|
ax3b.scatter(np.arange(N)[sorted_label_quality != None], |
|
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+') |
|
line_label_quality = ax4b.scatter(np.arange(N)[sorted_label_quality != None], |
|
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+', label='Label quality') |
|
ax1b.scatter(np.arange(N)[sorted_label_quality == None], |
|
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_') |
|
ax2b.scatter(np.arange(N)[sorted_label_quality == None], |
|
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_') |
|
ax3b.scatter(np.arange(N)[sorted_label_quality == None], |
|
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_') |
|
ax4b.scatter(np.arange(N)[sorted_label_quality == None], |
|
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_') |
|
|
|
plt.legend(handles=[line0te, line1te, line2te, line3te, line_label_quality], fontsize=6, loc=1) |
|
plt.tight_layout(0, 0, 0) |
|
plt.savefig(save_out_path) |
|
print('Save fig to {}'.format(save_out_path)) |
|
|
|
|
|
def prepare_plot_long_4_rows(sorted_lbs): |
|
N = len(sorted_lbs) |
|
|
|
f,(ax1a, ax2a, ax3a, ax4a) = plt.subplots(4, 1, sharey=False, facecolor='w', figsize=(10, 10.5)) |
|
|
|
fontsize = 5 |
|
|
|
K = 132 |
|
ax1a.set_xlim(0, K) |
|
ax2a.set_xlim(K, 2 * K) |
|
ax3a.set_xlim(2 * K, 3 * K) |
|
ax4a.set_xlim(3 * K, N) |
|
|
|
truncated_sorted_lbs = [] |
|
for lb in sorted_lbs: |
|
lb = lb[0 : 25] |
|
words = lb.split(' ') |
|
if len(words[-1]) < 3: |
|
lb = ' '.join(words[0:-1]) |
|
truncated_sorted_lbs.append(lb) |
|
|
|
ax1a.grid(which='major', axis='x', linestyle='-', alpha=0.3) |
|
ax2a.grid(which='major', axis='x', linestyle='-', alpha=0.3) |
|
ax3a.grid(which='major', axis='x', linestyle='-', alpha=0.3) |
|
ax4a.grid(which='major', axis='x', linestyle='-', alpha=0.3) |
|
|
|
ax1a.set_yscale('log') |
|
ax2a.set_yscale('log') |
|
ax3a.set_yscale('log') |
|
ax4a.set_yscale('log') |
|
|
|
ax1b = ax1a.twinx() |
|
ax2b = ax2a.twinx() |
|
ax3b = ax3a.twinx() |
|
ax4b = ax4a.twinx() |
|
ax1b.set_ylim(0., 1.) |
|
ax2b.set_ylim(0., 1.) |
|
ax3b.set_ylim(0., 1.) |
|
ax4b.set_ylim(0., 1.) |
|
ax1b.set_ylabel('Average precision') |
|
ax2b.set_ylabel('Average precision') |
|
ax3b.set_ylabel('Average precision') |
|
ax4b.set_ylabel('Average precision') |
|
|
|
ax1b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) |
|
ax2b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) |
|
ax3b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) |
|
ax4b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) |
|
|
|
ax1a.xaxis.set_ticks(np.arange(K)) |
|
ax1a.xaxis.set_ticklabels(truncated_sorted_lbs[0:K], rotation=90, fontsize=fontsize) |
|
ax1a.xaxis.tick_bottom() |
|
ax1a.set_ylabel("Number of audio clips") |
|
|
|
ax2a.xaxis.set_ticks(np.arange(K, 2*K)) |
|
ax2a.xaxis.set_ticklabels(truncated_sorted_lbs[K:2*K], rotation=90, fontsize=fontsize) |
|
ax2a.xaxis.tick_bottom() |
|
ax2a.set_ylabel("Number of audio clips") |
|
|
|
ax3a.xaxis.set_ticks(np.arange(2*K, 3*K)) |
|
ax3a.xaxis.set_ticklabels(truncated_sorted_lbs[2*K:3*K], rotation=90, fontsize=fontsize) |
|
ax3a.xaxis.tick_bottom() |
|
ax3a.set_ylabel("Number of audio clips") |
|
|
|
ax4a.xaxis.set_ticks(np.arange(3*K, N)) |
|
ax4a.xaxis.set_ticklabels(truncated_sorted_lbs[3*K:], rotation=90, fontsize=fontsize) |
|
ax4a.xaxis.tick_bottom() |
|
ax4a.set_ylabel("Number of audio clips") |
|
|
|
ax1a.spines['right'].set_visible(False) |
|
ax1b.spines['right'].set_visible(False) |
|
ax2a.spines['left'].set_visible(False) |
|
ax2b.spines['left'].set_visible(False) |
|
ax2a.spines['right'].set_visible(False) |
|
ax2b.spines['right'].set_visible(False) |
|
ax3a.spines['left'].set_visible(False) |
|
ax3b.spines['left'].set_visible(False) |
|
ax3a.spines['right'].set_visible(False) |
|
ax3b.spines['right'].set_visible(False) |
|
ax4a.spines['left'].set_visible(False) |
|
ax4b.spines['left'].set_visible(False) |
|
|
|
plt.subplots_adjust(hspace = 0.8) |
|
|
|
return ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b |
|
|
|
|
|
def _scatter_4_rows(x, ax, ax2, ax3, ax4, s, c, marker='.', alpha=1.): |
|
N = len(x) |
|
ax.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) |
|
ax2.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) |
|
ax3.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) |
|
ax4.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) |
|
|
|
|
|
def _plot_4_rows(x, ax, ax2, ax3, ax4, c, linewidth=1.0, alpha=1.0, label=""): |
|
N = len(x) |
|
ax.plot(x, c=c, linewidth=linewidth, alpha=alpha) |
|
ax2.plot(x, c=c, linewidth=linewidth, alpha=alpha) |
|
ax3.plot(x, c=c, linewidth=linewidth, alpha=alpha) |
|
line, = ax4.plot(x, c=c, linewidth=linewidth, alpha=alpha, label=label) |
|
return line |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='') |
|
subparsers = parser.add_subparsers(dest='mode') |
|
|
|
parser_classwise_iteration_map = subparsers.add_parser('plot_classwise_iteration_map') |
|
parser_six_figures = subparsers.add_parser('plot_six_figures') |
|
parser_complexity_map = subparsers.add_parser('plot_complexity_map') |
|
parser_long_fig = subparsers.add_parser('plot_long_fig') |
|
|
|
args = parser.parse_args() |
|
|
|
if args.mode == 'plot_classwise_iteration_map': |
|
plot_classwise_iteration_map(args) |
|
|
|
elif args.mode == 'plot_six_figures': |
|
plot_six_figures(args) |
|
|
|
elif args.mode == 'plot_complexity_map': |
|
plot_complexity_map(args) |
|
|
|
elif args.mode == 'plot_long_fig': |
|
plot_long_fig(args) |
|
|
|
else: |
|
raise Exception('Incorrect argument!') |