|
from pathlib import Path |
|
import argparse |
|
import numpy as np |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--input", help="input filename", type=str, nargs="+") |
|
parser.add_argument("--output", help="output result file", default=None) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
scores = {} |
|
for path in args.input: |
|
with open(path, "r") as reader: |
|
for line in reader.readlines(): |
|
metric, score = line.strip().split(": ") |
|
score = float(score) |
|
if metric not in scores: |
|
scores[metric] = [] |
|
scores[metric].append(score) |
|
|
|
if len(scores) == 0: |
|
print("No experiment directory found, wrong path?") |
|
exit(1) |
|
|
|
with open(args.output, "w") as writer: |
|
print("Average results: ", file=writer) |
|
for metric, score in scores.items(): |
|
score = np.array(score) |
|
mean = np.mean(score) |
|
std = np.std(score) |
|
print(f"{metric}: {mean:.3f} (±{std:.3f})", file=writer) |
|
print("", file=writer) |
|
print("Best results: ", file=writer) |
|
for metric, score in scores.items(): |
|
score = np.max(score) |
|
print(f"{metric}: {score:.3f}", file=writer) |
|
|