|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
from .film import Film |
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, activation, momentum): |
|
super(ConvBlock, self).__init__() |
|
|
|
self.activation = activation |
|
padding = (kernel_size[0] // 2, kernel_size[1] // 2) |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=(1, 1), |
|
dilation=(1, 1), |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
self.bn1 = nn.BatchNorm2d(out_channels, momentum=momentum) |
|
|
|
self.conv2 = nn.Conv2d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=(1, 1), |
|
dilation=(1, 1), |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
self.bn2 = nn.BatchNorm2d(out_channels, momentum=momentum) |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
init_layer(self.conv2) |
|
init_bn(self.bn1) |
|
init_bn(self.bn2) |
|
|
|
def forward(self, x): |
|
x = act(self.bn1(self.conv1(x)), self.activation) |
|
x = act(self.bn2(self.conv2(x)), self.activation) |
|
return x |
|
|
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, downsample, activation, momentum): |
|
super(EncoderBlock, self).__init__() |
|
|
|
self.conv_block = ConvBlock( |
|
in_channels, out_channels, kernel_size, activation, momentum |
|
) |
|
self.downsample = downsample |
|
|
|
def forward(self, x): |
|
encoder = self.conv_block(x) |
|
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) |
|
return encoder_pool, encoder |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, upsample, activation, momentum): |
|
super(DecoderBlock, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.stride = upsample |
|
self.activation = activation |
|
|
|
self.conv1 = torch.nn.ConvTranspose2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=self.stride, |
|
stride=self.stride, |
|
padding=(0, 0), |
|
bias=False, |
|
dilation=(1, 1), |
|
) |
|
|
|
self.bn1 = nn.BatchNorm2d(out_channels, momentum=momentum) |
|
|
|
self.conv_block2 = ConvBlock( |
|
out_channels * 2, out_channels, kernel_size, activation, momentum |
|
) |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
init_bn(self.bn) |
|
|
|
def prune(self, x): |
|
"""Prune the shape of x after transpose convolution.""" |
|
padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2) |
|
x = x[ |
|
:, |
|
:, |
|
padding[0] : padding[0] - self.stride[0], |
|
padding[1] : padding[1] - self.stride[1]] |
|
return x |
|
|
|
def forward(self, input_tensor, concat_tensor): |
|
x = act(self.bn1(self.conv1(input_tensor)), self.activation) |
|
|
|
|
|
x = torch.cat((x, concat_tensor), dim=1) |
|
x = self.conv_block2(x) |
|
return x |
|
|
|
|
|
class EncoderBlockRes1B(nn.Module): |
|
def __init__(self, in_channels, out_channels, downsample, activation, momentum): |
|
super(EncoderBlockRes1B, self).__init__() |
|
size = (3,3) |
|
|
|
self.conv_block1 = ConvBlockRes(in_channels, out_channels, size, activation, momentum) |
|
self.conv_block2 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block3 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block4 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.downsample = downsample |
|
|
|
def forward(self, x): |
|
encoder = self.conv_block1(x) |
|
encoder = self.conv_block2(encoder) |
|
encoder = self.conv_block3(encoder) |
|
encoder = self.conv_block4(encoder) |
|
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) |
|
return encoder_pool, encoder |
|
|
|
class DecoderBlockRes1B(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, activation, momentum): |
|
super(DecoderBlockRes1B, self).__init__() |
|
size = (3,3) |
|
self.activation = activation |
|
|
|
self.conv1 = torch.nn.ConvTranspose2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=size, stride=stride, |
|
padding=(0, 0), output_padding=(0, 0), bias=False, dilation=1) |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv_block2 = ConvBlockRes(out_channels * 2, out_channels, size, activation, momentum) |
|
self.conv_block3 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block4 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block5 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
|
|
def prune(self, x, both=False): |
|
"""Prune the shape of x after transpose convolution. |
|
""" |
|
if(both): x = x[:, :, 0 : - 1, 0:-1] |
|
else: x = x[:, :, 0: - 1, :] |
|
return x |
|
|
|
def forward(self, input_tensor, concat_tensor,both=False): |
|
x = self.conv1(F.relu_(self.bn1(input_tensor))) |
|
x = self.prune(x,both=both) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
x = self.conv_block2(x) |
|
x = self.conv_block3(x) |
|
x = self.conv_block4(x) |
|
x = self.conv_block5(x) |
|
return x |
|
|
|
|
|
class EncoderBlockRes2BCond(nn.Module): |
|
def __init__(self, in_channels, out_channels, downsample, activation, momentum, cond_embedding_dim): |
|
super(EncoderBlockRes2BCond, self).__init__() |
|
size = (3, 3) |
|
|
|
self.conv_block1 = ConvBlockResCond(in_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block2 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.downsample = downsample |
|
|
|
def forward(self, x, cond_vec): |
|
encoder = self.conv_block1(x, cond_vec) |
|
encoder = self.conv_block2(encoder, cond_vec) |
|
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) |
|
return encoder_pool, encoder |
|
|
|
class DecoderBlockRes2BCond(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, activation, momentum, cond_embedding_dim): |
|
super(DecoderBlockRes2BCond, self).__init__() |
|
size = (3, 3) |
|
self.activation = activation |
|
|
|
self.conv1 = torch.nn.ConvTranspose2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=size, stride=stride, |
|
padding=(0, 0), output_padding=(0, 0), bias=False, dilation=1) |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv_block2 = ConvBlockResCond(out_channels * 2, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block3 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
|
|
def prune(self, x, both=False): |
|
"""Prune the shape of x after transpose convolution. |
|
""" |
|
if(both): x = x[:, :, 0 : - 1, 0:-1] |
|
else: x = x[:, :, 0: - 1, :] |
|
return x |
|
|
|
def forward(self, input_tensor, concat_tensor, cond_vec, both=False): |
|
x = self.conv1(F.relu_(self.bn1(input_tensor))) |
|
x = self.prune(x, both=both) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
x = self.conv_block2(x, cond_vec) |
|
x = self.conv_block3(x, cond_vec) |
|
return x |
|
|
|
class EncoderBlockRes4BCond(nn.Module): |
|
def __init__(self, in_channels, out_channels, downsample, activation, momentum, cond_embedding_dim): |
|
super(EncoderBlockRes4B, self).__init__() |
|
size = (3,3) |
|
|
|
self.conv_block1 = ConvBlockResCond(in_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block2 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block3 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block4 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.downsample = downsample |
|
|
|
def forward(self, x, cond_vec): |
|
encoder = self.conv_block1(x, cond_vec) |
|
encoder = self.conv_block2(encoder, cond_vec) |
|
encoder = self.conv_block3(encoder, cond_vec) |
|
encoder = self.conv_block4(encoder, cond_vec) |
|
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) |
|
return encoder_pool, encoder |
|
|
|
class DecoderBlockRes4BCond(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, activation, momentum, cond_embedding_dim): |
|
super(DecoderBlockRes4B, self).__init__() |
|
size = (3, 3) |
|
self.activation = activation |
|
|
|
self.conv1 = torch.nn.ConvTranspose2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=size, stride=stride, |
|
padding=(0, 0), output_padding=(0, 0), bias=False, dilation=1) |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv_block2 = ConvBlockResCond(out_channels * 2, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block3 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block4 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
self.conv_block5 = ConvBlockResCond(out_channels, out_channels, size, activation, momentum, cond_embedding_dim) |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
|
|
def prune(self, x, both=False): |
|
"""Prune the shape of x after transpose convolution. |
|
""" |
|
if(both): x = x[:, :, 0 : - 1, 0:-1] |
|
else: x = x[:, :, 0: - 1, :] |
|
return x |
|
|
|
def forward(self, input_tensor, concat_tensor, cond_vec, both=False): |
|
x = self.conv1(F.relu_(self.bn1(input_tensor))) |
|
x = self.prune(x,both=both) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
x = self.conv_block2(x, cond_vec) |
|
x = self.conv_block3(x, cond_vec) |
|
x = self.conv_block4(x, cond_vec) |
|
x = self.conv_block5(x, cond_vec) |
|
return x |
|
|
|
class EncoderBlockRes4B(nn.Module): |
|
def __init__(self, in_channels, out_channels, downsample, activation, momentum): |
|
super(EncoderBlockRes4B, self).__init__() |
|
size = (3, 3) |
|
|
|
self.conv_block1 = ConvBlockRes(in_channels, out_channels, size, activation, momentum) |
|
self.conv_block2 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block3 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block4 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.downsample = downsample |
|
|
|
def forward(self, x): |
|
encoder = self.conv_block1(x) |
|
encoder = self.conv_block2(encoder) |
|
encoder = self.conv_block3(encoder) |
|
encoder = self.conv_block4(encoder) |
|
encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) |
|
return encoder_pool, encoder |
|
|
|
class DecoderBlockRes4B(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, activation, momentum): |
|
super(DecoderBlockRes4B, self).__init__() |
|
size = (3,3) |
|
self.activation = activation |
|
|
|
self.conv1 = torch.nn.ConvTranspose2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=size, stride=stride, |
|
padding=(0, 0), output_padding=(0, 0), bias=False, dilation=1) |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv_block2 = ConvBlockRes(out_channels * 2, out_channels, size, activation, momentum) |
|
self.conv_block3 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block4 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
self.conv_block5 = ConvBlockRes(out_channels, out_channels, size, activation, momentum) |
|
|
|
def init_weights(self): |
|
init_layer(self.conv1) |
|
|
|
def prune(self, x, both=False): |
|
"""Prune the shape of x after transpose convolution. |
|
""" |
|
if(both): x = x[:, :, 0 : - 1, 0:-1] |
|
else: x = x[:, :, 0: - 1, :] |
|
return x |
|
|
|
def forward(self, input_tensor, concat_tensor,both=False): |
|
x = self.conv1(F.relu_(self.bn1(input_tensor))) |
|
x = self.prune(x,both=both) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
x = self.conv_block2(x) |
|
x = self.conv_block3(x) |
|
x = self.conv_block4(x) |
|
x = self.conv_block5(x) |
|
return x |
|
|
|
class ConvBlockResCond(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, activation, momentum, cond_embedding_dim): |
|
r"""Residual block. |
|
""" |
|
super(ConvBlockResCond, self).__init__() |
|
|
|
self.activation = activation |
|
padding = [kernel_size[0] // 2, kernel_size[1] // 2] |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
|
self.conv1 = nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, stride=(1, 1), |
|
dilation=(1, 1), padding=padding, bias=False) |
|
self.film1 = Film(channels=out_channels, cond_embedding_dim=cond_embedding_dim) |
|
self.conv2 = nn.Conv2d(in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, stride=(1, 1), |
|
dilation=(1, 1), padding=padding, bias=False) |
|
self.film2 = Film(channels=out_channels, cond_embedding_dim=cond_embedding_dim) |
|
|
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)) |
|
self.film_res = Film(channels=out_channels, cond_embedding_dim=cond_embedding_dim) |
|
self.is_shortcut = True |
|
else: |
|
self.is_shortcut = False |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
init_bn(self.bn1) |
|
init_bn(self.bn2) |
|
init_layer(self.conv1) |
|
init_layer(self.conv2) |
|
|
|
if self.is_shortcut: |
|
init_layer(self.shortcut) |
|
|
|
def forward(self, x, cond_vec): |
|
origin = x |
|
x = self.conv1(F.leaky_relu_(self.bn1(x), negative_slope=0.01)) |
|
x = self.film1(x, cond_vec) |
|
x = self.conv2(F.leaky_relu_(self.bn2(x), negative_slope=0.01)) |
|
x = self.film2(x, cond_vec) |
|
if self.is_shortcut: |
|
residual = self.shortcut(origin) |
|
residual = self.film_res(residual, cond_vec) |
|
return residual + x |
|
else: |
|
return origin + x |
|
|
|
class ConvBlockRes(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, activation, momentum): |
|
r"""Residual block. |
|
""" |
|
super(ConvBlockRes, self).__init__() |
|
|
|
self.activation = activation |
|
padding = [kernel_size[0] // 2, kernel_size[1] // 2] |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
|
self.conv1 = nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, stride=(1, 1), |
|
dilation=(1, 1), padding=padding, bias=False) |
|
|
|
self.conv2 = nn.Conv2d(in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, stride=(1, 1), |
|
dilation=(1, 1), padding=padding, bias=False) |
|
|
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0)) |
|
self.is_shortcut = True |
|
else: |
|
self.is_shortcut = False |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
init_bn(self.bn1) |
|
init_bn(self.bn2) |
|
init_layer(self.conv1) |
|
init_layer(self.conv2) |
|
|
|
if self.is_shortcut: |
|
init_layer(self.shortcut) |
|
|
|
def forward(self, x): |
|
origin = x |
|
x = self.conv1(F.leaky_relu_(self.bn1(x), negative_slope=0.01)) |
|
x = self.conv2(F.leaky_relu_(self.bn2(x), negative_slope=0.01)) |
|
|
|
if self.is_shortcut: |
|
return self.shortcut(origin) + x |
|
else: |
|
return origin + x |
|
|
|
def init_layer(layer): |
|
"""Initialize a Linear or Convolutional layer. """ |
|
nn.init.xavier_uniform_(layer.weight) |
|
|
|
if hasattr(layer, 'bias'): |
|
if layer.bias is not None: |
|
layer.bias.data.fill_(0.) |
|
|
|
def init_bn(bn): |
|
"""Initialize a Batchnorm layer. """ |
|
bn.bias.data.fill_(0.) |
|
bn.weight.data.fill_(1.) |
|
|
|
def init_gru(rnn): |
|
"""Initialize a GRU layer. """ |
|
|
|
def _concat_init(tensor, init_funcs): |
|
(length, fan_out) = tensor.shape |
|
fan_in = length // len(init_funcs) |
|
|
|
for (i, init_func) in enumerate(init_funcs): |
|
init_func(tensor[i * fan_in: (i + 1) * fan_in, :]) |
|
|
|
def _inner_uniform(tensor): |
|
fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in') |
|
nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in)) |
|
|
|
for i in range(rnn.num_layers): |
|
_concat_init( |
|
getattr(rnn, 'weight_ih_l{}'.format(i)), |
|
[_inner_uniform, _inner_uniform, _inner_uniform] |
|
) |
|
torch.nn.init.constant_(getattr(rnn, 'bias_ih_l{}'.format(i)), 0) |
|
|
|
_concat_init( |
|
getattr(rnn, 'weight_hh_l{}'.format(i)), |
|
[_inner_uniform, _inner_uniform, nn.init.orthogonal_] |
|
) |
|
torch.nn.init.constant_(getattr(rnn, 'bias_hh_l{}'.format(i)), 0) |
|
|
|
|
|
def act(x, activation): |
|
if activation == 'relu': |
|
return F.relu_(x) |
|
|
|
elif activation == 'leaky_relu': |
|
return F.leaky_relu_(x, negative_slope=0.2) |
|
|
|
elif activation == 'swish': |
|
return x * torch.sigmoid(x) |
|
|
|
else: |
|
raise Exception('Incorrect activation!') |