|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
import numpy as np |
|
from .activations import Snake,SnakeBeta |
|
from .alias_free_torch import * |
|
import os |
|
from omegaconf import OmegaConf |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size*dilation - dilation)/2) |
|
|
|
class AMPBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): |
|
super(AMPBlock1, self).__init__() |
|
self.h = h |
|
|
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs1) + len(self.convs2) |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class AMPBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): |
|
super(AMPBlock2, self).__init__() |
|
self.h = h |
|
|
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs) |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
for c, a in zip (self.convs, self.activations): |
|
xt = a(x) |
|
xt = c(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class BigVGAN(torch.nn.Module): |
|
|
|
def __init__(self, h): |
|
super(BigVGAN, self).__init__() |
|
self.h = h |
|
|
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
|
|
|
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
|
|
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append(nn.ModuleList([ |
|
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), |
|
h.upsample_initial_channel // (2 ** (i + 1)), |
|
k, u, padding=(k - u) // 2)) |
|
])) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) |
|
|
|
|
|
if h.activation == "snake": |
|
activation_post = Snake(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
elif h.activation == "snakebeta": |
|
activation_post = SnakeBeta(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_weight_norm(l_i) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
self.d_mult = h.discriminator_channel_mult |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))), |
|
]) |
|
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.mpd_reshapes = h.mpd_reshapes |
|
print("mpd_reshapes: {}".format(self.mpd_reshapes)) |
|
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes] |
|
self.discriminators = nn.ModuleList(discriminators) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorR(nn.Module): |
|
def __init__(self, cfg, resolution): |
|
super().__init__() |
|
|
|
self.resolution = resolution |
|
assert len(self.resolution) == 3, \ |
|
"MRD layer requires list with len=3, got {}".format(self.resolution) |
|
self.lrelu_slope = LRELU_SLOPE |
|
|
|
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm |
|
if hasattr(cfg, "mrd_use_spectral_norm"): |
|
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm)) |
|
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm |
|
self.d_mult = cfg.discriminator_channel_mult |
|
if hasattr(cfg, "mrd_channel_mult"): |
|
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult)) |
|
self.d_mult = cfg.mrd_channel_mult |
|
|
|
self.convs = nn.ModuleList([ |
|
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))), |
|
]) |
|
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
x = self.spectrogram(x) |
|
x = x.unsqueeze(1) |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, self.lrelu_slope) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
def spectrogram(self, x): |
|
n_fft, hop_length, win_length = self.resolution |
|
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect') |
|
x = x.squeeze(1) |
|
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True) |
|
x = torch.view_as_real(x) |
|
mag = torch.norm(x, p=2, dim =-1) |
|
|
|
return mag |
|
|
|
|
|
class MultiResolutionDiscriminator(nn.Module): |
|
def __init__(self, cfg, debug=False): |
|
super().__init__() |
|
self.resolutions = cfg.resolutions |
|
assert len(self.resolutions) == 3,\ |
|
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\ |
|
format(self.resolutions) |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions] |
|
) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(x=y) |
|
y_d_g, fmap_g = d(x=y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss*2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean((1-dr)**2) |
|
g_loss = torch.mean(dg**2) |
|
loss += (r_loss + g_loss) |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean((1-dg)**2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
|
|
class VocoderBigVGAN(object): |
|
def __init__(self, ckpt_vocoder,device='cuda'): |
|
vocoder_sd = torch.load(os.path.join(ckpt_vocoder,'best_netG.pt'), map_location='cpu') |
|
|
|
vocoder_args = OmegaConf.load(os.path.join(ckpt_vocoder,'args.yml')) |
|
|
|
self.generator = BigVGAN(vocoder_args) |
|
self.generator.load_state_dict(vocoder_sd['generator']) |
|
self.generator.eval() |
|
|
|
self.device = device |
|
self.generator.to(self.device) |
|
|
|
def vocode(self, spec): |
|
with torch.no_grad(): |
|
if isinstance(spec,np.ndarray): |
|
spec = torch.from_numpy(spec).unsqueeze(0) |
|
spec = spec.to(dtype=torch.float32,device=self.device) |
|
return self.generator(spec).squeeze().cpu().numpy() |
|
|
|
def __call__(self, wav): |
|
return self.vocode(wav) |
|
|