|
import json |
|
import os |
|
import random |
|
import re |
|
import traceback |
|
from collections import Counter |
|
from functools import partial |
|
|
|
import librosa |
|
from tqdm import tqdm |
|
from text_to_speech.data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls |
|
from text_to_speech.data_gen.tts.wav_processors.base_processor import get_wav_processor_cls |
|
from text_to_speech.utils.commons.hparams import hparams |
|
from text_to_speech.utils.commons.multiprocess_utils import multiprocess_run_tqdm |
|
from text_to_speech.utils.os_utils import link_file, move_file, remove_file |
|
from text_to_speech.utils.text.text_encoder import is_sil_phoneme, build_token_encoder |
|
|
|
|
|
class BasePreprocessor: |
|
def __init__(self): |
|
self.preprocess_args = hparams['preprocess_args'] |
|
txt_processor = self.preprocess_args['txt_processor'] |
|
self.txt_processor = get_txt_processor_cls(txt_processor) |
|
self.raw_data_dir = hparams['raw_data_dir'] |
|
self.processed_dir = hparams['processed_data_dir'] |
|
self.spk_map_fn = f"{self.processed_dir}/spk_map.json" |
|
|
|
def meta_data(self): |
|
""" |
|
|
|
:return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func} |
|
""" |
|
raise NotImplementedError |
|
|
|
def process(self): |
|
processed_dir = self.processed_dir |
|
wav_processed_tmp_dir = f'{processed_dir}/processed_tmp' |
|
remove_file(wav_processed_tmp_dir) |
|
os.makedirs(wav_processed_tmp_dir, exist_ok=True) |
|
wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}' |
|
remove_file(wav_processed_dir) |
|
os.makedirs(wav_processed_dir, exist_ok=True) |
|
|
|
meta_data = list(tqdm(self.meta_data(), desc='Load meta data')) |
|
item_names = [d['item_name'] for d in meta_data] |
|
assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.' |
|
|
|
|
|
phone_list = [] |
|
word_list = [] |
|
spk_names = set() |
|
process_item = partial(self.preprocess_first_pass, |
|
txt_processor=self.txt_processor, |
|
wav_processed_dir=wav_processed_dir, |
|
wav_processed_tmp=wav_processed_tmp_dir, |
|
preprocess_args=self.preprocess_args) |
|
items = [] |
|
args = [{ |
|
'item_name': item_raw['item_name'], |
|
'txt_raw': item_raw['txt'], |
|
'wav_fn': item_raw['wav_fn'], |
|
'txt_loader': item_raw.get('txt_loader'), |
|
'others': item_raw.get('others', None) |
|
} for item_raw in meta_data] |
|
for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')): |
|
if item is not None: |
|
item_.update(item) |
|
item = item_ |
|
if 'txt_loader' in item: |
|
del item['txt_loader'] |
|
item['id'] = item_id |
|
item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>') |
|
item['others'] = item.get('others', None) |
|
phone_list += item['ph'].split(" ") |
|
word_list += item['word'].split(" ") |
|
spk_names.add(item['spk_name']) |
|
items.append(item) |
|
|
|
|
|
ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list) |
|
spk_map = self.build_spk_map(spk_names) |
|
args = [{ |
|
'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'], |
|
'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map |
|
} for item in items] |
|
for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'): |
|
items[idx].update(item_new_kv) |
|
|
|
|
|
if self.preprocess_args['use_mfa']: |
|
mfa_dict = set() |
|
mfa_input_dir = f'{processed_dir}/mfa_inputs' |
|
remove_file(mfa_input_dir) |
|
|
|
mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))] |
|
if self.preprocess_args['mfa_group_shuffle']: |
|
random.seed(hparams['seed']) |
|
random.shuffle(mfa_groups) |
|
args = [{ |
|
'item': item, 'mfa_input_dir': mfa_input_dir, |
|
'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir, |
|
'preprocess_args': self.preprocess_args |
|
} for item, mfa_group in zip(items, mfa_groups)] |
|
for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm( |
|
self.build_mfa_inputs, args, desc='Build MFA data'): |
|
items[i]['wav_align_fn'] = new_wav_align_fn |
|
for w in ph_gb_word_nosil.split(" "): |
|
mfa_dict.add(f"{w} {w.replace('_', ' ')}") |
|
mfa_dict = sorted(mfa_dict) |
|
with open(f'{processed_dir}/mfa_dict.txt', 'w') as f: |
|
f.writelines([f'{l}\n' for l in mfa_dict]) |
|
with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f: |
|
f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1))) |
|
remove_file(wav_processed_tmp_dir) |
|
|
|
@classmethod |
|
def preprocess_first_pass(cls, item_name, txt_raw, txt_processor, |
|
wav_fn, wav_processed_dir, wav_processed_tmp, |
|
preprocess_args, txt_loader=None, others=None): |
|
try: |
|
if txt_loader is not None: |
|
txt_raw = txt_loader(txt_raw) |
|
ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args) |
|
|
|
wav_fn, wav_align_fn = cls.process_wav( |
|
item_name, wav_fn, |
|
hparams['processed_data_dir'], |
|
wav_processed_tmp, preprocess_args) |
|
|
|
|
|
ext = os.path.splitext(wav_fn)[1] |
|
os.makedirs(wav_processed_dir, exist_ok=True) |
|
new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}" |
|
move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file |
|
move_link_func(wav_fn, new_wav_fn) |
|
return { |
|
'txt': txt, 'txt_raw': txt_raw, 'ph': ph, |
|
'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word, |
|
'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn, |
|
'others': others |
|
} |
|
except: |
|
traceback.print_exc() |
|
print(f"| Error is caught. item_name: {item_name}.") |
|
return None |
|
|
|
@staticmethod |
|
def txt_to_ph(txt_processor, txt_raw, preprocess_args): |
|
txt_struct, txt = txt_processor.process(txt_raw, preprocess_args) |
|
ph = [p for w in txt_struct for p in w[1]] |
|
ph_gb_word = ["_".join(w[1]) for w in txt_struct] |
|
words = [w[0] for w in txt_struct] |
|
|
|
ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))] |
|
return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word) |
|
|
|
@staticmethod |
|
def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args): |
|
processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']] |
|
processors = [k() for k in processors if k is not None] |
|
if len(processors) >= 1: |
|
sr_file = librosa.core.get_samplerate(wav_fn) |
|
output_fn_for_align = None |
|
ext = os.path.splitext(wav_fn)[1] |
|
input_fn = f"{wav_processed_tmp}/{item_name}{ext}" |
|
link_file(wav_fn, input_fn) |
|
for p in processors: |
|
outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args) |
|
if len(outputs) == 3: |
|
input_fn, sr, output_fn_for_align = outputs |
|
else: |
|
input_fn, sr = outputs |
|
return input_fn, output_fn_for_align |
|
else: |
|
return wav_fn, wav_fn |
|
|
|
def _phone_encoder(self, ph_set): |
|
ph_set_fn = f"{self.processed_dir}/phone_set.json" |
|
if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): |
|
ph_set = sorted(set(ph_set)) |
|
json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False) |
|
print("| Build phone set: ", ph_set) |
|
else: |
|
ph_set = json.load(open(ph_set_fn, 'r')) |
|
print("| Load phone set: ", ph_set) |
|
return build_token_encoder(ph_set_fn) |
|
|
|
def _word_encoder(self, word_set): |
|
word_set_fn = f"{self.processed_dir}/word_set.json" |
|
if self.preprocess_args['reset_word_dict']: |
|
word_set = Counter(word_set) |
|
total_words = sum(word_set.values()) |
|
word_set = word_set.most_common(hparams['word_dict_size']) |
|
num_unk_words = total_words - sum([x[1] for x in word_set]) |
|
word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set] |
|
word_set = sorted(set(word_set)) |
|
json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False) |
|
print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," |
|
f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") |
|
else: |
|
word_set = json.load(open(word_set_fn, 'r')) |
|
print("| Load word set. Size: ", len(word_set), word_set[:10]) |
|
return build_token_encoder(word_set_fn) |
|
|
|
@classmethod |
|
def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map): |
|
word_token = word_encoder.encode(word) |
|
ph_token = ph_encoder.encode(ph) |
|
spk_id = spk_map[spk_name] |
|
return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id} |
|
|
|
def build_spk_map(self, spk_names): |
|
spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))} |
|
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) |
|
print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}") |
|
json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False) |
|
return spk_map |
|
|
|
@classmethod |
|
def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args): |
|
item_name = item['item_name'] |
|
wav_align_fn = item['wav_align_fn'] |
|
ph_gb_word = item['ph_gb_word'] |
|
ext = os.path.splitext(wav_align_fn)[1] |
|
mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}' |
|
os.makedirs(mfa_input_group_dir, exist_ok=True) |
|
new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}" |
|
move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file |
|
move_link_func(wav_align_fn, new_wav_align_fn) |
|
ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) |
|
for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)]) |
|
with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt: |
|
f_txt.write(ph_gb_word_nosil) |
|
return ph_gb_word_nosil, new_wav_align_fn |
|
|
|
def load_spk_map(self, base_dir): |
|
spk_map_fn = f"{base_dir}/spk_map.json" |
|
spk_map = json.load(open(spk_map_fn, 'r')) |
|
return spk_map |
|
|
|
def load_dict(self, base_dir): |
|
ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json') |
|
word_encoder = build_token_encoder(f'{base_dir}/word_set.json') |
|
return ph_encoder, word_encoder |
|
|
|
@property |
|
def meta_csv_filename(self): |
|
return 'metadata' |
|
|
|
@property |
|
def wav_processed_dirname(self): |
|
return 'wav_processed' |
|
|