|
import math |
|
import random |
|
from functools import partial |
|
from inspect import isfunction |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from tqdm import tqdm |
|
|
|
from text_to_speech.modules.tts.fs2_orig import FastSpeech2Orig |
|
from text_to_speech.modules.tts.diffspeech.net import DiffNet |
|
from text_to_speech.modules.tts.commons.align_ops import expand_states |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
|
|
|
|
def extract(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def noise_like(shape, device, repeat=False): |
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) |
|
noise = lambda: torch.randn(shape, device=device) |
|
return repeat_noise() if repeat else noise() |
|
|
|
|
|
def linear_beta_schedule(timesteps, max_beta=0.01): |
|
""" |
|
linear schedule |
|
""" |
|
betas = np.linspace(1e-4, max_beta, timesteps) |
|
return betas |
|
|
|
|
|
def cosine_beta_schedule(timesteps, s=0.008): |
|
""" |
|
cosine schedule |
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ |
|
""" |
|
steps = timesteps + 1 |
|
x = np.linspace(0, steps, steps) |
|
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 |
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] |
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) |
|
return np.clip(betas, a_min=0, a_max=0.999) |
|
|
|
|
|
beta_schedule = { |
|
"cosine": cosine_beta_schedule, |
|
"linear": linear_beta_schedule, |
|
} |
|
|
|
|
|
DIFF_DECODERS = { |
|
'wavenet': lambda hp: DiffNet(hp), |
|
} |
|
|
|
|
|
class AuxModel(FastSpeech2Orig): |
|
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, |
|
f0=None, uv=None, energy=None, infer=False, **kwargs): |
|
ret = {} |
|
encoder_out = self.encoder(txt_tokens) |
|
src_nonpadding = (txt_tokens > 0).float()[:, :, None] |
|
style_embed = self.forward_style_embed(spk_embed, spk_id) |
|
|
|
|
|
dur_inp = (encoder_out + style_embed) * src_nonpadding |
|
mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret) |
|
tgt_nonpadding = (mel2ph > 0).float()[:, :, None] |
|
decoder_inp = decoder_inp_ = expand_states(encoder_out, mel2ph) |
|
|
|
|
|
if self.hparams['use_pitch_embed']: |
|
pitch_inp = (decoder_inp_ + style_embed) * tgt_nonpadding |
|
decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out) |
|
|
|
|
|
if self.hparams['use_energy_embed']: |
|
energy_inp = (decoder_inp_ + style_embed) * tgt_nonpadding |
|
decoder_inp = decoder_inp + self.forward_energy(energy_inp, energy, ret) |
|
|
|
|
|
ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding |
|
if self.hparams['dec_inp_add_noise']: |
|
B, T, _ = decoder_inp.shape |
|
z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device) |
|
ret['adv_z'] = z |
|
decoder_inp = torch.cat([decoder_inp, z], -1) |
|
decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding |
|
if kwargs['skip_decoder']: |
|
return ret |
|
ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) |
|
return ret |
|
|
|
|
|
class GaussianDiffusion(nn.Module): |
|
def __init__(self, dict_size, hparams, out_dims=None): |
|
super().__init__() |
|
self.hparams = hparams |
|
out_dims = hparams['audio_num_mel_bins'] |
|
denoise_fn = DIFF_DECODERS[hparams['diff_decoder_type']](hparams) |
|
timesteps = hparams['timesteps'] |
|
K_step = hparams['K_step'] |
|
loss_type = hparams['diff_loss_type'] |
|
spec_min = hparams['spec_min'] |
|
spec_max = hparams['spec_max'] |
|
|
|
self.denoise_fn = denoise_fn |
|
self.fs2 = AuxModel(dict_size, hparams) |
|
self.mel_bins = out_dims |
|
|
|
if hparams['schedule_type'] == 'linear': |
|
betas = linear_beta_schedule(timesteps, hparams['max_beta']) |
|
else: |
|
betas = cosine_beta_schedule(timesteps) |
|
|
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.K_step = K_step |
|
self.loss_type = loss_type |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
|
|
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) |
|
|
|
self.register_buffer('posterior_variance', to_torch(posterior_variance)) |
|
|
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) |
|
self.register_buffer('posterior_mean_coef1', to_torch( |
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) |
|
self.register_buffer('posterior_mean_coef2', to_torch( |
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) |
|
|
|
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) |
|
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - |
|
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + |
|
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, cond, clip_denoised: bool): |
|
noise_pred = self.denoise_fn(x, t, cond=cond) |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) |
|
|
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return ( |
|
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise |
|
) |
|
|
|
def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
|
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
x_recon = self.denoise_fn(x_noisy, t, cond) |
|
|
|
if self.loss_type == 'l1': |
|
if nonpadding is not None: |
|
loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() |
|
else: |
|
|
|
loss = (noise - x_recon).abs().mean() |
|
|
|
elif self.loss_type == 'l2': |
|
loss = F.mse_loss(noise, x_recon) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return loss |
|
|
|
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, |
|
ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs): |
|
b, *_, device = *txt_tokens.shape, txt_tokens.device |
|
ret = self.fs2(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, |
|
f0=f0, uv=uv, energy=energy, infer=infer, skip_decoder=(not infer), **kwargs) |
|
cond = ret['decoder_inp'].transpose(1, 2) |
|
|
|
if not infer: |
|
t = torch.randint(0, self.K_step, (b,), device=device).long() |
|
x = ref_mels |
|
x = self.norm_spec(x) |
|
x = x.transpose(1, 2)[:, None, :, :] |
|
ret['diff_loss'] = self.p_losses(x, t, cond) |
|
|
|
|
|
ret['mel_out'] = None |
|
else: |
|
ret['fs2_mel'] = ret['mel_out'] |
|
fs2_mels = ret['mel_out'] |
|
t = self.K_step |
|
fs2_mels = self.norm_spec(fs2_mels) |
|
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :] |
|
|
|
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long()) |
|
if self.hparams.get('gaussian_start') is not None and self.hparams['gaussian_start']: |
|
print('===> gaussian start.') |
|
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) |
|
x = torch.randn(shape, device=device) |
|
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): |
|
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) |
|
x = x[:, 0].transpose(1, 2) |
|
ret['mel_out'] = self.denorm_spec(x) |
|
|
|
return ret |
|
|
|
def norm_spec(self, x): |
|
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 |
|
|
|
def denorm_spec(self, x): |
|
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min |
|
|
|
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): |
|
return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) |
|
|
|
def out2mel(self, x): |
|
return x |