|
import torch |
|
import torch.distributions |
|
import torch.nn.functional as F |
|
import torch.optim |
|
import torch.utils.data |
|
|
|
from text_to_speech.modules.tts.fs import FastSpeech |
|
from tasks.tts.dataset_utils import FastSpeechWordDataset |
|
from tasks.tts.speech_base import SpeechBaseTask |
|
from text_to_speech.utils.audio.align import mel2token_to_dur |
|
from text_to_speech.utils.audio.pitch.utils import denorm_f0 |
|
from text_to_speech.utils.commons.hparams import hparams |
|
|
|
|
|
class FastSpeechTask(SpeechBaseTask): |
|
def __init__(self): |
|
super().__init__() |
|
self.dataset_cls = FastSpeechWordDataset |
|
self.sil_ph = self.token_encoder.sil_phonemes() |
|
|
|
def build_tts_model(self): |
|
dict_size = len(self.token_encoder) |
|
self.model = FastSpeech(dict_size, hparams) |
|
|
|
def run_model(self, sample, infer=False, *args, **kwargs): |
|
txt_tokens = sample['txt_tokens'] |
|
spk_embed = sample.get('spk_embed') |
|
spk_id = sample.get('spk_ids') |
|
if not infer: |
|
target = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample.get('f0') |
|
uv = sample.get('uv') |
|
output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, |
|
f0=f0, uv=uv, infer=False, |
|
ph2word=sample['ph2word'], |
|
graph_lst=sample.get('graph_lst'), |
|
etypes_lst=sample.get('etypes_lst'), |
|
bert_feats=sample.get("bert_feats"), |
|
cl_feats=sample.get("cl_feats") |
|
) |
|
losses = {} |
|
self.add_mel_loss(output['mel_out'], target, losses) |
|
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) |
|
if hparams['use_pitch_embed']: |
|
self.add_pitch_loss(output, sample, losses) |
|
return losses, output |
|
else: |
|
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) |
|
use_gt_f0 = kwargs.get('infer_use_gt_f0', hparams['use_gt_f0']) |
|
mel2ph, uv, f0 = None, None, None |
|
if use_gt_dur: |
|
mel2ph = sample['mel2ph'] |
|
if use_gt_f0: |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, |
|
f0=f0, uv=uv, infer=True, |
|
ph2word=sample['ph2word'], |
|
graph_lst=sample.get('graph_lst'), |
|
etypes_lst=sample.get('etypes_lst'), |
|
bert_feats=sample.get("bert_feats"), |
|
cl_feats=sample.get("cl_feats") |
|
) |
|
return output |
|
|
|
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None): |
|
""" |
|
|
|
:param dur_pred: [B, T], float, log scale |
|
:param mel2ph: [B, T] |
|
:param txt_tokens: [B, T] |
|
:param losses: |
|
:return: |
|
""" |
|
B, T = txt_tokens.shape |
|
nonpadding = (txt_tokens != 0).float() |
|
dur_gt = mel2token_to_dur(mel2ph, T).float() * nonpadding |
|
is_sil = torch.zeros_like(txt_tokens).bool() |
|
for p in self.sil_ph: |
|
is_sil = is_sil | (txt_tokens == self.token_encoder.encode(p)[0]) |
|
is_sil = is_sil.float() |
|
losses['pdur'] = F.mse_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none') |
|
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() |
|
losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur'] |
|
|
|
if hparams['lambda_word_dur'] > 0: |
|
word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long() |
|
word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:] |
|
word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:] |
|
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') |
|
word_nonpadding = (word_dur_g > 0).float() |
|
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() |
|
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] |
|
if hparams['lambda_sent_dur'] > 0: |
|
sent_dur_p = dur_pred.sum(-1) |
|
sent_dur_g = dur_gt.sum(-1) |
|
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') |
|
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] |
|
|
|
def add_pitch_loss(self, output, sample, losses): |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \ |
|
else (sample['txt_tokens'] != 0).float() |
|
p_pred = output['pitch_pred'] |
|
assert p_pred[..., 0].shape == f0.shape |
|
if hparams['use_uv'] and hparams['pitch_type'] == 'frame': |
|
assert p_pred[..., 1].shape == uv.shape, (p_pred.shape, uv.shape) |
|
losses['uv'] = (F.binary_cross_entropy_with_logits( |
|
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \ |
|
/ nonpadding.sum() * hparams['lambda_uv'] |
|
nonpadding = nonpadding * (uv == 0).float() |
|
f0_pred = p_pred[:, :, 0] |
|
losses['f0'] = (F.l1_loss(f0_pred, f0, reduction='none') * nonpadding).sum() \ |
|
/ nonpadding.sum() * hparams['lambda_f0'] |
|
|
|
def save_valid_result(self, sample, batch_idx, model_out): |
|
sr = hparams['audio_sample_rate'] |
|
f0_gt = None |
|
mel_out = model_out['mel_out'] |
|
if sample.get('f0') is not None: |
|
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) |
|
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) |
|
if self.global_step > 0: |
|
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) |
|
|
|
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) |
|
dur_info = self.get_plot_dur_info(sample, model_out) |
|
del dur_info['dur_pred'] |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}', |
|
dur_info=dur_info, f0s=f0_gt) |
|
|
|
|
|
if not hparams['use_gt_dur']: |
|
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) |
|
dur_info = self.get_plot_dur_info(sample, model_out) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', |
|
dur_info=dur_info, f0s=f0_gt) |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) |
|
|
|
if self.global_step <= hparams['valid_infer_interval']: |
|
mel_gt = sample['mels'][0].cpu() |
|
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) |
|
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr) |
|
|
|
def get_plot_dur_info(self, sample, model_out): |
|
T_txt = sample['txt_tokens'].shape[1] |
|
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] |
|
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt |
|
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) |
|
txt = txt.split(" ") |
|
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} |
|
|
|
def test_step(self, sample, batch_idx): |
|
""" |
|
|
|
:param sample: |
|
:param batch_idx: |
|
:return: |
|
""" |
|
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' |
|
outputs = self.run_model(sample, infer=True) |
|
text = sample['text'][0] |
|
item_name = sample['item_name'][0] |
|
tokens = sample['txt_tokens'][0].cpu().numpy() |
|
mel_gt = sample['mels'][0].cpu().numpy() |
|
mel_pred = outputs['mel_out'][0].cpu().numpy() |
|
mel2ph = sample['mel2ph'][0].cpu().numpy() |
|
mel2ph_pred = outputs['mel2ph'][0].cpu().numpy() |
|
str_phs = self.token_encoder.decode(tokens, strip_padding=True) |
|
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' |
|
if text is not None: |
|
base_fn += text.replace(":", "$3A")[:80] |
|
base_fn = base_fn.replace(' ', '_') |
|
gen_dir = self.gen_dir |
|
wav_pred = self.vocoder.spec2wav(mel_pred) |
|
self.saving_result_pool.add_job(self.save_result, args=[ |
|
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) |
|
if hparams['save_gt']: |
|
wav_gt = self.vocoder.spec2wav(mel_gt) |
|
self.saving_result_pool.add_job(self.save_result, args=[ |
|
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) |
|
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") |
|
return { |
|
'item_name': item_name, |
|
'text': text, |
|
'ph_tokens': self.token_encoder.decode(tokens.tolist()), |
|
'wav_fn_pred': base_fn % 'P', |
|
'wav_fn_gt': base_fn % 'G', |
|
} |
|
|