|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
from text_to_speech.modules.tts.syntaspeech.multi_window_disc import Discriminator |
|
from tasks.tts.fs import FastSpeechTask |
|
from text_to_speech.modules.tts.fs import FastSpeech |
|
|
|
from text_to_speech.utils.audio.align import mel2token_to_dur |
|
from text_to_speech.utils.commons.hparams import hparams |
|
from text_to_speech.utils.nn.model_utils import num_params |
|
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars |
|
from text_to_speech.utils.audio.pitch.utils import denorm_f0, norm_f0 |
|
from text_to_speech.utils.audio.pitch_extractors import get_pitch |
|
from text_to_speech.utils.metrics.dtw import dtw as DTW |
|
|
|
from text_to_speech.utils.plot.plot import spec_to_figure |
|
from text_to_speech.utils.text.text_encoder import build_token_encoder |
|
|
|
|
|
class FastSpeechAdvTask(FastSpeechTask): |
|
def __init__(self): |
|
super().__init__() |
|
self.build_disc_model() |
|
self.mse_loss_fn = torch.nn.MSELoss() |
|
|
|
def build_tts_model(self): |
|
dict_size = len(self.token_encoder) |
|
self.model = FastSpeech(dict_size, hparams) |
|
self.gen_params = [p for p in self.model.parameters() if p.requires_grad] |
|
self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)] |
|
self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)] |
|
self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)] |
|
self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ] |
|
self.use_bert = True if len(self.bert_params) > 0 else False |
|
|
|
|
|
def build_disc_model(self): |
|
disc_win_num = hparams['disc_win_num'] |
|
h = hparams['mel_disc_hidden_size'] |
|
self.mel_disc = Discriminator( |
|
time_lengths=[32, 64, 128][:disc_win_num], |
|
freq_length=80, hidden_size=h, kernel=(3, 3) |
|
) |
|
self.disc_params = list(self.mel_disc.parameters()) |
|
|
|
def _training_step(self, sample, batch_idx, optimizer_idx): |
|
loss_output = {} |
|
loss_weights = {} |
|
disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0 |
|
if optimizer_idx == 0: |
|
|
|
|
|
|
|
loss_output, model_out = self.run_model(sample, infer=False) |
|
self.model_out_gt = self.model_out = \ |
|
{k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)} |
|
if disc_start: |
|
mel_p = model_out['mel_out'] |
|
if hasattr(self.model, 'out2mel'): |
|
mel_p = self.model.out2mel(mel_p) |
|
o_ = self.mel_disc(mel_p) |
|
p_, pc_ = o_['y'], o_['y_c'] |
|
if p_ is not None: |
|
loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size())) |
|
loss_weights['a'] = hparams['lambda_mel_adv'] |
|
if pc_ is not None: |
|
loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size())) |
|
loss_weights['ac'] = hparams['lambda_mel_adv'] |
|
else: |
|
|
|
|
|
|
|
if disc_start and self.global_step % hparams['disc_interval'] == 0: |
|
model_out = self.model_out_gt |
|
mel_g = sample['mels'] |
|
mel_p = model_out['mel_out'] |
|
o = self.mel_disc(mel_g) |
|
p, pc = o['y'], o['y_c'] |
|
o_ = self.mel_disc(mel_p) |
|
p_, pc_ = o_['y'], o_['y_c'] |
|
if p_ is not None: |
|
loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size())) |
|
loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size())) |
|
if pc_ is not None: |
|
loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size())) |
|
loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size())) |
|
else: |
|
return None |
|
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad]) |
|
loss_output['batch_size'] = sample['txt_tokens'].size()[0] |
|
return total_loss, loss_output |
|
|
|
def validation_start(self): |
|
self.vocoder = None |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
outputs['losses'] = {} |
|
outputs['losses'], model_out = self.run_model(sample) |
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = tensors_to_scalars(outputs) |
|
if self.global_step % hparams['valid_infer_interval'] == 0 \ |
|
and batch_idx < hparams['num_valid_plots']: |
|
valid_results = self.save_valid_result(sample, batch_idx, model_out) |
|
|
|
mel_gt = valid_results['mel_gt'] |
|
|
|
mel_pred = valid_results['mel_pred'] |
|
|
|
|
|
|
|
|
|
|
|
return outputs |
|
|
|
def save_valid_result(self, sample, batch_idx, model_out): |
|
sr = hparams['audio_sample_rate'] |
|
f0_gt = None |
|
mel_out = model_out['mel_out'] |
|
if sample.get('f0') is not None: |
|
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) |
|
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) |
|
|
|
|
|
if self.vocoder is not None: |
|
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) |
|
|
|
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) |
|
dur_info = self.get_plot_dur_info(sample, model_out) |
|
del dur_info['dur_pred'] |
|
if self.vocoder is not None: |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}', |
|
dur_info=dur_info, f0s=f0_gt) |
|
|
|
|
|
if not hparams['use_gt_dur']: |
|
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) |
|
dur_info = self.get_plot_dur_info(sample, model_out) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', |
|
dur_info=dur_info, f0s=f0_gt) |
|
if self.vocoder is not None: |
|
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) |
|
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) |
|
|
|
mel_gt = sample['mels'][0].cpu() |
|
if self.vocoder is not None: |
|
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) |
|
if self.global_step <= hparams['valid_infer_interval']: |
|
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr) |
|
|
|
|
|
|
|
|
|
|
|
return {'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()} |
|
|
|
|
|
|
|
def get_plot_dur_info(self, sample, model_out): |
|
|
|
|
|
|
|
|
|
|
|
|
|
T_txt = sample['txt_tokens'].shape[1] |
|
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] |
|
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt |
|
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) |
|
txt = txt.split(" ") |
|
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} |
|
|
|
def build_optimizer(self, model): |
|
|
|
optimizer_gen = torch.optim.AdamW( |
|
self.gen_params, |
|
lr=hparams['lr'], |
|
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), |
|
weight_decay=hparams['weight_decay']) |
|
|
|
optimizer_disc = torch.optim.AdamW( |
|
self.disc_params, |
|
lr=hparams['disc_lr'], |
|
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), |
|
**hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None |
|
|
|
return [optimizer_gen, optimizer_disc] |
|
|
|
def build_scheduler(self, optimizer): |
|
return [ |
|
FastSpeechTask.build_scheduler(self, optimizer[0]), |
|
torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], |
|
**hparams["discriminator_scheduler_params"]), |
|
] |
|
|
|
def on_before_optimization(self, opt_idx): |
|
if opt_idx == 0: |
|
nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm']) |
|
if self.use_bert: |
|
nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm']) |
|
nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm']) |
|
else: |
|
nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm']) |
|
else: |
|
nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"]) |
|
|
|
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): |
|
if self.scheduler is not None: |
|
self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches']) |
|
self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches']) |
|
|
|
|
|
|
|
|
|
def test_start(self): |
|
super().test_start() |
|
if hparams.get('save_attn', False): |
|
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True) |
|
self.model.store_inverse_all() |
|
|
|
def test_step(self, sample, batch_idx): |
|
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' |
|
outputs = self.run_model(sample, infer=True) |
|
text = sample['text'][0] |
|
item_name = sample['item_name'][0] |
|
tokens = sample['txt_tokens'][0].cpu().numpy() |
|
mel_gt = sample['mels'][0].cpu().numpy() |
|
mel_pred = outputs['mel_out'][0].cpu().numpy() |
|
mel2ph = sample['mel2ph'][0].cpu().numpy() |
|
mel2ph_pred = None |
|
str_phs = self.token_encoder.decode(tokens, strip_padding=True) |
|
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' |
|
if text is not None: |
|
base_fn += text.replace(":", "$3A")[:80] |
|
base_fn = base_fn.replace(' ', '_') |
|
gen_dir = self.gen_dir |
|
wav_pred = self.vocoder.spec2wav(mel_pred) |
|
self.saving_result_pool.add_job(self.save_result, args=[ |
|
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) |
|
if hparams['save_gt']: |
|
wav_gt = self.vocoder.spec2wav(mel_gt) |
|
self.saving_result_pool.add_job(self.save_result, args=[ |
|
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) |
|
if hparams.get('save_attn', False): |
|
attn = outputs['attn'][0].cpu().numpy() |
|
np.save(f'{gen_dir}/attn/{item_name}.npy', attn) |
|
|
|
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) |
|
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) |
|
np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_) |
|
np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_) |
|
|
|
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") |
|
return { |
|
'item_name': item_name, |
|
'text': text, |
|
'ph_tokens': self.token_encoder.decode(tokens.tolist()), |
|
'wav_fn_pred': base_fn % 'P', |
|
'wav_fn_gt': base_fn % 'G', |
|
} |
|
|